Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 106(2): 691-700, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34633236

RESUMEN

Potato virus V (PVV) causes a disease of potato (Solanum tubersosum) in South and Central America, Europe, and the Middle East. We report here the complete genomic sequences of 42 new PVV isolates from the potato's Andean domestication center in Peru and of eight historical or recent isolates from Europe. When the principal open reading frames of these genomic sequences together with those of nine previously published genomic sequences were analyzed, only two from Peru and one from Iran were found to be recombinant. The phylogeny of the 56 nonrecombinant open reading frame sequences showed that the PVV population had two major phylogroups, one of which formed three minor phylogroups (A1 to A3) of isolates, all of which are found only in the Andean region of South America (Peru and Colombia), and the other formed two minor phylogroups, a basal one of Andean isolates (A4) that is paraphyletic to a crown cluster containing all the isolates found outside South America (World). This suggests that PVV originated in the Andean region, with only one minor phylogroup spreading elsewhere in the world. In minor phylogroups A1 and A3, there were two subclades on long branches containing isolates from S. phureja evolving more rapidly than the others, and these interfered with dating calculations. Although no temporal signal was directly detected among the dated nonrecombinant sequences, PVV and potato virus Y (PVY) are from the same potyvirus lineage and are ecologically similar, so "subtree dating" was done via a single maximum likelihood phylogeny of PVV and PVY sequences, and PVY's well-supported 157 ce "time to most common recent ancestor" was extrapolated to date that of PVV as 29 bce. Thus the independent historical coincidences supporting the datings of the PVV and PVY phylogenies are the same; PVV arose ≥2,000 years ago in the Andes and was taken to Europe during the Columbian Exchange, where it diversified around 1853 ce, soon after the European potato late blight pandemic. PVV is likely to be more widespread than currently realized and is of biosecurity relevance for world regions that have not yet recorded its presence.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Asunto(s)
Filogenia , Potyvirus , Solanum tuberosum , Evolución Biológica , Enfermedades de las Plantas/virología , Potyvirus/clasificación , Solanum tuberosum/virología , América del Sur
2.
Phytopathology ; 111(1): 217-226, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33174824

RESUMEN

Forty-seven potato virus A (PVA) isolates from Europe, Australia, and South America's Andean region were subjected to high-throughput sequencing, and 46 complete genomes from Europe (n = 9), Australia (n = 2), and the Andes (n = 35) obtained. These and 17 other genomes gave alignments of 63 open reading frames 9,180 nucleotides long; 9 were recombinants. The nonrecombinants formed three tightly clustered, almost equidistant phylogroups; A comprised 14 Peruvian potato isolates; W comprised 37 from potato in Peru, Argentina, and elsewhere in the world; and T contained three from tamarillo in New Zealand. When five isolates were inoculated to a potato cultivar differential, three strain groups (= pathotypes) unrelated to phylogenetic groupings were recognized. No temporal signal was detected among the dated nonrecombinant sequences, but PVA and potato virus Y (PVY) are from related lineages and ecologically similar; therefore, "relative dating" was obtained using a single maximum-likelihood phylogeny of PVA and PVY sequences and PVY's well-supported 157 CE "time to most common recent ancestor". The PVA datings obtained were supported by several independent historical coincidences. The PVA and PVY populations apparently arose in the Andes approximately 18 centuries ago, and were taken to Europe during the Columbian Exchange, radiating there after the mid-19th century potato late blight pandemic. PVA's phylogroup A population diverged more recently in the Andean region, probably after new cultivars were bred locally using newly introduced Solanum tuberosum subsp. tuberosum as a parent. Such cultivars became widely grown, and apparently generated the A × W phylogroup recombinants. Phylogroup A, and its interphylogroup recombinants, might pose a biosecurity risk.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.


Asunto(s)
Potyvirus , Solanum tuberosum , Argentina , Australia , Europa (Continente) , Nueva Zelanda , Filogenia , Fitomejoramiento , Enfermedades de las Plantas , Potyvirus/genética
3.
Plant Dis ; 105(11): 3600-3609, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34080887

RESUMEN

Potato virus Y (PVY) disrupts healthy seed potato production and causes tuber yield and quality losses globally. Its subdivisions consist of strain groups defined by potato hypersensitive resistance (HR) genes and whether necrosis occurs in tobacco, and phylogroups defined by sequencing. When PVY isolate PP was inoculated to potato cultivar differentials with HR genes, the HR phenotype pattern obtained resembled that caused by strain group PVYD isolate KIP1. A complete genome of isolate PP was obtained by high-throughput sequencing. After removal of its short terminal recombinant segment, it was subjected to phylogenetic analysis together with 30 complete nonrecombinant PVY genomes. It fitted within the same minor phylogroup PVYO3 subclade as KIP1. Putative HR gene Nd was proposed previously to explain the unique HR phenotype pattern that developed when differential cultivars were inoculated with PVYD. However, an alternative explanation was that PVYD elicits HR with HR genes Nc and Ny instead. To establish which gene(s) it elicits, isolates KIP1 and PP were inoculated to F1 potato seedlings from (i) crossing 'Kipfler' and 'White Rose' with 'Ruby Lou' and (ii) self-pollinated 'Desiree' and 'Ruby Lou', where 'Kipfler' is susceptible (S) but 'White Rose', 'Desiree', and 'Ruby Lou' develop HR. With both isolates, the HR:S segregation ratios obtained fitted 5:1 for 'Kipfler' × 'Ruby Lou', 11:1 for 'White Rose' × 'Ruby Lou', and 3:1 for 'Desiree'. Those for 'Ruby Lou' were 68:1 (isolate PP) and 52:0 (isolate KIP1). Because potato is tetraploid, these ratios suggest PVYD elicits HR with Ny from 'Ruby Lou' (duplex condition) and 'Desiree' (simplex condition) and Nc from 'White Rose' (simplex condition) but provide no evidence that Nd exists. Therefore, our differential cultivar inoculations and inheritance studies highlight that PVYD isolates elicit an HR phenotype in potato cultivars with either of two HR genes Nc or Ny, so putative gene Nd can be discounted. Moreover, phylogenetic analysis placed isolate PP within the same minor phylogroup PVYO3 subclade as KIP1, which constitutes the most basal divergence within overall major phylogroup PVYO.


Asunto(s)
Potyvirus , Solanum tuberosum , Filogenia , Enfermedades de las Plantas , Potyvirus/genética , Nicotiana
4.
Plant Dis ; 104(9): 2317-2323, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32692623

RESUMEN

Potato virus Y (PVY) isolates from potato currently exist as a complex of six biologically defined strain groups all containing nonrecombinant isolates and at least 14 recombinant minor phylogroups. Recent studies on eight historical UK potato PVY isolates preserved since 1984 found only nonrecombinants. Here, four of five PVY isolates from cultivated potato or wild Solanum spp. collected recently in Australia, Mexico, and the U.S.A. were typed by inoculation to tobacco plants and/or serological testing using monoclonal antibodies. Next, these five modern isolates and four additional historical UK isolates belonging to biological strain groups PVYC, PVYZ, or PVYN obtained from cultivated potato in 1943 to 1984 were sequenced. None of the nine complete PVY genomes obtained were recombinants. Phylogenetic analysis revealed that the four historical UK isolates were in minor phylogroups PVYC1 (YC-R), PVYO-O (YZ-CM1), PVYNA-N (YN-M), or PVYEu-N (YN-RM), Australian isolate YO-BL2 was in minor phylogroup PVYO-O5, and both Mexican isolate YN-Mex43 and U.S.A. isolates YN-MT12_Oth288, YN-MT12_Oth295, and YN-WWAA150131G42 were in minor phylogroup PVYEu-N. When combined, these new findings and those from the eight historical UK isolates sequenced earlier provide important historical insights concerning the diversity of early PVY populations in Europe and the appearance of recombinants in that part of the world. They and four recent Australian isolates sequenced earlier also provide geographical insights about the geographical distribution and diversity of PVY populations in Australia and North America.


Asunto(s)
Potyvirus , Australia , Europa (Continente) , Variación Genética , México , América del Norte , Filogenia , Enfermedades de las Plantas
5.
Arch Virol ; 164(11): 2849-2852, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31502078

RESUMEN

Arracacha virus B type (AVB-T) and oca (AVB-O) strains from arracacha (Arracacia xanthorrhiza) and oca (Oxalis tuberosa) samples collected in 1975 and two additional isolates obtained from arracacha (AVB-PX) and potato (AVB-6A) in Peru in 1976 and 1978, respectively, were studied. In its host responses and serological properties, AVB-PX most resembled AVB-T, whereas AVB-6A most resembled AVB-O. Complete genomic sequences of the RNA-1 and RNA-2 of each isolate were obtained following high-throughput sequencing of RNA extracts from isolates preserved for 38 (AVB-PX) or 32 (the other 3 isolates) years, and compared with a genomic sequence of AVB-O obtained previously (PV-0082). RNA-2 was unexpectedly divergent compared to RNA-1, with the nucleotide (nt) sequence identity of different AVB isolates varying by up to 76% (RNA-2) and 89% (RNA-1). The coat protein amino acid sequences were the most divergent, with AVB-O and AVB-6A having only 68% identity to AVB-T and AVB-PX. Since the RNA2 sequence differences between the two isolate groupings also coincided with host range, symptom, and serological differences, AVB demonstrates considerable intraspecific divergence.


Asunto(s)
Genoma Viral/genética , ARN Viral/genética , Secoviridae/genética , Secuencia de Aminoácidos , Secuencia de Bases , Proteínas de la Cápside/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Magnoliopsida/virología , Oxalidaceae/virología , Perú , Enfermedades de las Plantas/virología , Secoviridae/aislamiento & purificación , Solanum tuberosum/virología
6.
Plant Dis ; 103(7): 1746-1756, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31082318

RESUMEN

In 1976, a virus with flexuous, filamentous virions typical of the family Potyviridae was isolated from symptomatic pepino (Solanum muricatum) plants growing in two valleys in Peru's coastal desert region. In 2014, a virus with similar-shaped virions was isolated from asymptomatic fruits obtained from pepino plants growing in six coastal valleys and a valley in Peru's Andean highlands. Both were identified subsequently as Wild potato mosaic virus (WPMV) by serology or high-throughput sequencing (HTS). The symptoms caused by two old and seven new isolates from pepino were examined in indicator plants. Infected solanaceous hosts varied considerably in their sensitivities to infection and individual isolates varied greatly in virulence. All seven new isolates caused quick death of infected Nicotiana benthamiana plants and more than half of them killed infected plants of Physalis floridana and S. chancayense. These three species were the most sensitive to infection. The most virulent isolate was found to be BA because it killed five of eight solanaceous host species whereas CA was the least severe because it only killed N. benthamiana. Using HTS, complete genomic sequences of six isolates were obtained, with one isolate (FE) showing evidence of recombination. The distances between individual WPMV isolates in phylogenetic trees and the geographical distances between their collection sites were found to be unrelated. The individual WPMV isolates displayed nucleotide sequence identities of 80.9-99.8%, whereas the most closely related virus, Potato virus V (PVV), was around 75% identical to WPMV. WPMV, PVV, and Peru tomato virus formed clusters of similar phylogenetic diversity, and were found to be distinct but related viruses within the overall Potato virus Y lineage. WPMV infection seems widespread and of likely economic significance to pepino producers in Peru's coastal valleys. Because it constitutes the fifth virus found infecting pepino and this crop is entirely vegetatively propagated, development of healthy pepino stock programs is advocated.


Asunto(s)
Genoma Viral , Potyvirus , Solanum , Genoma Viral/genética , Perú , Filogenia , Potyvirus/clasificación , Potyvirus/genética , Solanum/microbiología , Especificidad de la Especie
7.
Plant Dis ; 103(12): 3009-3017, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31567060

RESUMEN

The Chittering strain of potato spindle tuber viroid (PSTVd) infects solanaceous crops and wild plants in the subtropical Gascoyne Horticultural District of Western Australia. Classical PSTVd indicator hosts tomato cultivar Rutgers (R) and potato cultivar Russet Burbank (RB) and currently widely grown tomato cultivars Petula (P) and Swanson (S) and potato cultivars Nadine (N) and Atlantic (A) were inoculated with this strain to study its pathogenicity, quantify fruit or tuber yield losses, and establish whether tomato strains might threaten potato production. In potato foliage, infection caused spindly stems, an upright growth habit, leaves with ruffled margins and reduced size, and upward rolling and twisting of terminal leaflets (RB, A, and N); axillary shoot proliferation (A); severe plant stunting (N and RB); and necrotic spotting of petioles and stems (RB). Tubers from infected plants were tiny (N) or small and "spindle shaped" with (A) or without (RB) cracking. Potato foliage dry weight biomass was decreased by 30 to 44% in A and RB and 37% in N, whereas tuber yield was diminished by 50 to 89% in A, 69 to 71% in RB, and 90% in N. In tomato foliage, infection caused epinasty and rugosity in apical leaves, leaf chlorosis, and plant stunting (S, P, and N); cupped leaves (S and P); and reduced leaf size, flower abortion, and necrosis of midribs, petioles, and stems (R). Mean tomato fruit size was greatly decreased in all three cultivars. Tomato foliage dry weight biomass was diminished by 40 to 53% (P), 42% (S), and 37 to 51% (R). Tomato fruit yield was decreased by 60 to 76% (P), 52% (S), and 64 to 89% (R), respectively. Thus, the tomato strain studied was highly pathogenic to classical indicator and representative current tomato and potato cultivars, causing major losses in fruit and tuber yields. Tomato PSTVd strains, therefore, pose a threat to tomato and potato industries worldwide.


Asunto(s)
Enfermedades de las Plantas , Solanum lycopersicum , Solanum tuberosum , Viroides , Solanum lycopersicum/virología , Enfermedades de las Plantas/virología , Solanum tuberosum/virología , Viroides/fisiología , Australia Occidental
8.
Plant Dis ; 103(4): 737-747, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30856073

RESUMEN

Isolates of papaya ringspot virus (PRSV) were obtained from plants of pumpkin (Cucurbita spp.) or cucumber (Cucumis sativus) showing mosaic symptoms growing at Zage in Goroka District in the Eastern Highland Province of Papua New Guinea (PNG) or Bagl in the Mount Hagen District, Western Highlands Province. The samples were sent to Australia on FTA cards where they were subjected to High Throughput Sequencing (HTS). When the coding regions of the six new PRSV genomic sequences obtained via HTS were compared with those of 54 other complete PRSV sequences from other parts of the world, all six grouped together with the 12 northern Australian sequences within major phylogroup B minor phylogroup I, the Australian sequences coming from three widely dispersed locations spanning the north of the continent. Notably, none of the PNG isolates grouped with genomic sequences from the nearby country of East Timor in phylogroup A. The closest genetic match between Australian and PNG sequences was a nucleotide (nt) sequence identity of 96.9%, whereas between PNG and East Timorese isolates it was only 83.1%. These phylogenetic and nt identity findings demonstrate genetic connectivity between PRSV populations from PNG and Australia. Recombination analysis of the 60 PRSV sequences available revealed evidence of 26 recombination events within 18 isolates, only four of which were within major phylogroup B and none of which were from PNG or Australia. Within the recombinant genomes, the P1, Cl, NIa-Pro, NIb, 6K2, and 5'UTR regions contained the highest numbers of recombination breakpoints. After removal of nonrecombinant sequences, four minor phylogroups were lost (IV, VII, VIII, XV), only one of which was in phylogroup B. When genome regions from which recombinationally derived tracts of sequence were removed from recombinants prior to alignment with nonrecombinant genomes, seven previous minor phylogroups within major phylogroup A, and two within major phylogroup B, merged either partially or entirely forming four merged minor phylogroups. The genetic connectivity between PNG and northern Australian isolates and absence of detectable recombination within either group suggests that PRSV isolates from East Timor, rather than PNG, might pose a biosecurity threat to northern Australian agriculture should they prove more virulent than those already present.


Asunto(s)
Genoma Viral , Potyvirus , Recombinación Genética , Australia , Papúa Nueva Guinea , Filogenia , Potyvirus/clasificación , Potyvirus/genética , Timor Oriental
9.
Plant Dis ; 103(6): 1326-1336, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30995424

RESUMEN

Zucchini yellow mosaic virus (ZYMV) isolates were obtained in Papua New Guinea (PNG) from cucumber (Cucumis sativus) or pumpkin (Cucurbita spp.) plants showing mosaic symptoms growing at Kongop in the Mount Hagen District, Western Highlands Province, or Zage in the Goroka District, Eastern Highlands Province. The samples were blotted onto FTA cards, which were sent to Australia, where they were subjected to high-throughput sequencing. When the coding regions of the nine new ZYMV genomic sequences found were compared with those of 64 other ZYMV sequences from elsewhere, they grouped together, forming new minor phylogroup VII within ZYMV's major phylogroup A. Genetic connectivity was lacking between ZYMV genomic sequences from PNG and its neighboring countries, Australia and East Timor; the closest match between a PNG and any other genomic sequence was a 92.8% nucleotide identity with a sequence in major phylogroup A's minor phylogroup VI from Japan. When the RDP5.2 recombination analysis program was used to compare 66 ZYMV sequences, evidence was obtained of 30 firm recombination events involving 41 sequences, and all isolates from PNG were recombinants. There were 21 sequences without recombination events in major phylogroup A, whereas there were only 4 such sequences within major phylogroup B. ZYMV's P1, Cl, N1a-Pro, P3, CP, and NIb regions contained the highest evidence of recombination breakpoints. Following removal of recombinant sequences, seven minor phylogroups were absent (I, III, IV, V, VI, VII, and VIII), leaving only minor phylogroups II and IX. By contrast, when a phylogenetic tree was constructed using recombinant sequences with their recombinationally derived tracts removed before analysis, five previous minor phylogroups remained unchanged within major phylogroup A (II, III, IV, V, and VII) while four formed two new merged phylogroups (I/VI and VIII/IX). Absence of genetic connectivity between PNG, Australian, and East Timorese ZYMV sequences, and the 92.8% nucleotide identity between a PNG sequence and the closest sequence from elsewhere, suggest that a single introduction may have occurred followed by subsequent evolution to adapt to the PNG environment. The need for enhanced biosecurity measures to protect against potentially damaging virus movements crossing the seas separating neighboring countries in this region of the world is discussed.


Asunto(s)
Genoma Viral , Filogenia , Potyvirus , Australia , Variación Genética , Genoma Viral/genética , Papúa Nueva Guinea , Potyvirus/clasificación , Potyvirus/genética , Especificidad de la Especie , Timor Oriental
10.
Plant Dis ; 102(1): 185-196, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30673468

RESUMEN

Strain-specific hypersensitive (HR) and extreme resistance (ER) phenotypes elicited in potato plants by three Potato virus Y (PVY) isolates in strain groups PVYO (BL and DEL3) and PVYD (KIP1) were studied. PVYO and PVYD isolates elicit HR genes Ny or putative Nd, respectively, and all three isolates elicit ER gene Ry. They were inoculated to 39 Australasian, European, or North American potato cultivars released over a 117-year period and harvested tubers were replanted. Both primary and secondary symptoms were recorded. Two European cultivars always developed ER following sap and graft inoculation and, thus, carried comprehensive PVY resistance gene Ry. One Australasian and two European cultivars always developed susceptible phenotypes and, thus, lacked genes Ry, Ny, and putative Nd. Sap inoculation with isolate KIP1 elicited localized HR (LHR) in 31 cultivars and both LHR and systemic HR (SHR) in three others; thus, all carried putative Nd. Isolates BL and DEL3 both elicited susceptible phenotypes in 11 of these 34 cultivars but LHR alone, SHR alone, or both LHR and SHR in the other 23 which, therefore, all carry Ny. With these two isolates, SHR expression ranged from very severe to very weak, with the greatest numbers of isolate-cultivar combinations occurring in the severe category with BL (n = 11) and moderate category (n = 12) with DEL3. Within the same isolate-cultivar combination, overall, SHR symptom expression was weaker with secondary than primary infection. With both primary and secondary infection, SHR expression was most severe with KIP1 and weakest with DEL3. Genes Ny and putative Nd were present in cultivars released between 1939 and 2010 or 1893 and 2010, respectively, occurring in cultivars from all three world regions. These findings have important implications concerning breeding new PVY-resistant potato cultivars, especially for countries lacking healthy seed potato stocks, or where subsistence farmers cannot afford them. An alternative to including gene Ry is incorporating as many strain-specific PVY resistance genes as possible.


Asunto(s)
Fenotipo , Enfermedades de las Plantas/virología , Potyvirus/fisiología , Solanum tuberosum/genética , Solanum tuberosum/virología , Australasia , Europa (Continente) , América del Norte , Fitomejoramiento
11.
Plant Dis ; 102(3): 589-599, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30673482

RESUMEN

Sweet potato feathery mottle virus (SPFMV) and Sweet potato virus C (SPVC) isolates from sweetpotato were studied to examine genetic connectivity between viruses from Australia and Southeast Asia. East Timorese samples from sweetpotato were sent to Australia on FTA cards. Shoot and tuberous root samples were collected in Australia and planted in the glasshouse, and scions were graft inoculated to Ipomoea setosa plants. Symptoms in infected sweetpotato and I. setosa plants were recorded. RNA extracts from FTA cards and I. setosa leaf samples were subjected to high-throughput sequencing (HTS). Complete genomic sequences (CS) of SPFMV and SPVC (11 each) were obtained by HTS, and coat protein (CP) genes from them were compared with others from GenBank. SPFMV sequences clustered into two major phylogroups (A and B = RC) and two minor phylogroups (EA[I] and O[II]) within A; East Timorese sequences were in EA(I) and O(II), whereas Australian sequences were in O(II) and B(RC). With SPVC, CP trees provided sufficient diversity to distinguish major phylogroups A and B and six minor phylogroups within A (I to VI); East Timorese sequences were in minor phylogroup I, whereas Australian sequences were in minor phylogroups II and VI and in major phylogroup B. With SPFMV, Aus13B grouped with East Timorese sequence TM64B within minor phylogroup O, giving nucleotide sequence identities of 97.4% (CS) and 98.3% (CP). However, the closest match with an Australian sequence was the 97.6% (CS) and 98.7% (CP) nucleotide identity between Aus13B and an Argentinian sequence. With SPVC, closest nucleotide identity matches between Australian and East Timorese sequences were 94.1% with Aus6a and TM68A (CS) and 96.3% with Aus55-4C and TM64A (CP); however neither pair member belonged to the same minor phylogroup. Also, the closest Australian match was 99.1% (CP) nucleotide identity between Aus4C and New Zealand isolate NZ4-4. These first complete genome sequences of SPFMV and SPVC from sweetpotato plantings in the Australian continent and neighboring Southeast Asia suggest at least two (SPFMV) and three (SPVC) separate introductions to Australia since agriculture commenced more than two centuries ago. These findings have major implications for both healthy stock programs and biosecurity management in relation to pathogen entry into Australia and elsewhere.


Asunto(s)
Genoma Viral/genética , Ipomoea batatas/virología , Enfermedades de las Plantas/virología , Potyvirus/genética , Australia , Filogenia , Hojas de la Planta/virología , Potyvirus/aislamiento & purificación
12.
Plant Dis ; 102(5): 869-885, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-30673374

RESUMEN

Biological characteristics of 11 Potato virus S (PVS) isolates from three cultivated potato species (Solanum spp.) growing in five Andean countries and 1 from Scotland differed in virulence depending on isolate and host species. Nine isolates infected Chenopodium quinoa systemically but two others and the Scottish isolate remained restricted to inoculated leaves; therefore, they belonged to biologically defined strains PVSA and PVSO, respectively. When nine wild potato species were inoculated, most developed symptomless systemic infection but Solanum megistacrolobum developed systemic hypersensitive resistance (SHR) with one PVSO and two PVSA isolates. Andean potato cultivars developed mostly asymptomatic primary infection but predominantly symptomatic secondary infection. In both wild and cultivated potato plants, PVSA and PVSO elicited similar foliage symptoms. Following graft inoculation, all except two PVSO isolates were detected in partially PVS-resistant cultivar Saco, while clone Snec 66/139-19 developed SHR with two isolates each of PVSA and PVSO. Myzus persicae transmitted all nine PVSA isolates but none of the three PVSO isolates. All 12 isolates were transmitted by plant-to-plant contact. In infective sap, all isolates had thermal inactivation points of 55 to 60°C. Longevities in vitro were 25 to 40 days with six PVSA isolates but less than 21 days for the three PVSO isolates. Dilution end points were 10-3 for two PVSO isolates but 10-4 to 10-6 with the other isolates. Complete new genome sequences were obtained from seven Andean PVS isolates; seven isolates from Africa, Australia, or Europe; and single isolates from S. muricatum and Arracacia xanthorhiza. These 17 new genomes and 23 from GenBank provided 40 unique sequences; however, 5 from Eurasia were recombinants. Phylogenetic analysis of the 35 nonrecombinants revealed three major lineages, two predominantly South American (SA) and evenly branched and one non-SA with a single long basal branch and many distal subdivisions. Using least squares dating and nucleotide sequences, the two nodes of the basal PVS trifurcation were dated at 1079 and 1055 Common Era (CE), the three midphylogeny nodes of the SA lineages at 1352, 1487, and 1537 CE, and the basal node to the non-SA lineage at 1837 CE. The Potato rough dwarf virus/Potato virus P (PVS/PRDV/PVP) cluster was sister to PVS and diverged 5,000 to 7,000 years ago. The non-SA PVS lineage contained 18 of 19 isolates from S. tuberosum subsp. tuberosum but the two SA lineages contained 6 from S. tuberosum subsp. andigena, 4 from S. phureja, 3 from S. tuberosum subsp. tuberosum, and 1 each from S. muricatum, S. curtilobum, and A. xanthorrhiza. This suggests that a potato-infecting proto-PVS/PRDV/PVP emerged in South America at least 5,000 years ago, became endemic, and diverged into a range of local Solanum spp. and other species, and one early lineage spread worldwide in potato. Preventing establishment of the SA lineages is advised for all countries still without them.


Asunto(s)
Carlavirus/genética , Carlavirus/fisiología , Filogenia , Enfermedades de las Plantas/virología , Solanum tuberosum/virología , Hojas de la Planta/virología , América del Sur
13.
Plant Dis ; 101(6): 985-993, 2017 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30682933

RESUMEN

To examine possible genetic connectivity between crop viruses found in Southeast Asia and Australia, Papaya ringspot virus biotype W (PRSV-W) isolates from cucurbits growing in East Timor and northern Australia were studied. East Timorese samples from cucumber (Cucumis sativus) or pumpkin (Cucurbita moschata and C. maxima) were sent to Australia on FTA cards. These samples and others of pumpkin, rockmelon, honeydew melon (Cucumis melo), or watermelon (Citrullus lanatus) growing in one location each in northwest, north, or northeast Australia were subjected to high throughput sequencing (HTS). When the 17 complete PRSV genomic sequences obtained by HTS were compared with 32 others from GenBank, the five from East Timor were in a different major phylogroup from the 12 Australian sequences. Moreover, the East Timorese and Australian sequences each formed their own minor phylogroups named VI and I, respectively. A Taiwanese sequence was closest to the East Timorese (89.6% nt dentity), and Mexican and Brazilian sequences were the closest to the Australian (92.3% nt identity). When coat protein gene (CP) sequences from the 17 new genomic sequences were compared with 126 others from GenBank, three Australian isolates sequenced more than 20 years ago grouped with the new Australian sequences, while the closest sequence to the East Timorese was from Thailand (93.1% nt identity). Recombination analysis revealed 13 recombination events among the 49 complete genomes. Two isolates from East Timor (TM50, TM32) and eight from GenBank were recombinants, but all 12 Australian isolates were non-recombinants. No evidence of genome connectivity between Australian and Southeast Asian PRSV populations was obtained. The strand-specific RNA library approach used optimized data collection for virus genome assembly. When an Australian PRSV isolate was inoculated to plants of zucchini (Cucurbita pepo), watermelon, rockmelon, and honeydew melon, they all developed systemic foliage symptoms characteristic of PRSV-W, but symptom severity varied among melon cultivars.

14.
Plant Dis ; 101(5): 674-683, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-30678573

RESUMEN

A new resistance-breaking strain of Turnip mosaic virus (TuMV) overcomes TuMV resistance genes that currently suppress spread of this virus in Brassica napus crops in the Liverpool Plains region of eastern Australia. Isolates 12.1 and 12.5 of this strain and three other isolates in TuMV pathotypes 1 (NSW-2), 7 (NSW-1), and 8 (WA-Ap1) were inoculated to plants of 19 B. napus cultivars and one breeding line. All plants of these cultivars and the breeding line proved susceptible to 12.1 and 12.5 but developed only resistance phenotypes with WA-Ap1 or mostly resistance phenotypes with NSW-1 and NSW-2. Five different TuMV resistance phenotypes occurred either alone or segregating in different combinations. When these five isolates were inoculated to plants of nine other crop or wild Brassicaceae spp. and four indicator hosts in other families, 12.1 and 12.5 resembled the other three in inducing TuMV resistance phenotypes in some Brassicaceae spp. but not others, and by inducing extreme resistance phenotypes in all inoculated plants of B. oleracea var. botrytis and Raphanus sativus. Therefore, the overall resistance-breaking properties of 12.1 and 12.5 were restricted to B. napus. When isolates 12.1, 12.5, and WA-Ap1 and additional Australian isolate WA-EP1 were sequenced and complete genomes of each compared, 12.1 and 12.5 grouped separately from the other 2 and from all 23 Australian isolates with complete genomes sequenced previously. In addition, there was evidence for at least six separate TuMV introductions to Australia. Spread of this B. napus resistance-breaking strain poses a significant threat to the B. napus oilseed industry. Breeding B. napus cultivars with resistance to this strain constitutes a critical priority for B. napus breeding programs in Australia and elsewhere.

15.
Plant Dis ; 101(7): 1236-1245, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30682959

RESUMEN

Zucchini yellow mosaic virus (ZYMV) isolates from cucurbit crops growing in northern Australia and East Timor were investigated to establish possible genetic connectivity between crop viruses in Australia and Southeast Asia. Leaves from symptomatic plants of pumpkin (Cucurbita moschata and C. maxima), melon (Cucumis melo), and zucchini (C. pepo) were sampled near Broome, Darwin, and Kununurra in northern Australia. Leaves from symptomatic plants of cucumber (C. sativus) and pumpkin sampled in East Timor were sent to Australia on FTA cards. These samples were subjected to high-throughput sequencing and 15 complete new ZYMV genomic sequences obtained. When their nucleotide sequences were compared with those of 48 others from GenBank, the East Timorese and Kununurra sequences (three per location) and single earlier sequences from Singapore and Reunion Island were all in major phylogroup B. The seven Broome and two Darwin sequences were in minor phylogroups I and II, respectively, within larger major phylogroup A. When coat protein (CP) nucleotide sequences from the 15 new genomes and 47 Australian isolates sequenced previously were compared with 331 other CP sequences, the closest genetic match for a sequence from Kununurra was with an East Timorese sequence (95.5% nucleotide identity). Analysis of the 63 complete genomes found firm recombination events in 12 (75%) and 2 (4%) sequences from northern Australia or Southeast Asia versus the rest of the world, respectively; therefore, the formers' high recombination frequency might reflect adaptation to tropical conditions. Both parents of the recombinant Kununurra sequence were East Timorese. Phylogenetic analysis, nucleotide sequence identities, and recombination analysis provided clear evidence of genetic connectivity between sequences from Kununurra and East Timor. Inoculation of a Broome isolate to zucchini and watermelon plants reproduced field symptoms observed in northern Australia. This research has important biosecurity implications over entry of damaging viral crop pathogens not only into northern Australia but also moving between Australia's different agricultural regions.

16.
Arch Virol ; 161(7): 2051-7, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27101071

RESUMEN

Current approaches used to name within-species, plant virus phylogenetic groups are often misleading and illogical. They involve names based on biological properties, sequence differences and geographical, country or place-association designations, or any combination of these. This type of nomenclature is becoming increasingly unsustainable as numbers of sequences of the same virus from new host species and different parts of the world increase. Moreover, this increase is accelerating as world trade and agriculture expand, and climate change progresses. Serious consequences for virus research and disease management might arise from incorrect assumptions made when current within-species phylogenetic group names incorrectly identify properties of group members. This could result in development of molecular tools that incorrectly target dangerous virus strains, potentially leading to unjustified impediments to international trade or failure to prevent such strains being introduced to countries, regions or continents formerly free of them. Dangerous strains might be missed or misdiagnosed by diagnostic laboratories and monitoring programs, and new cultivars with incorrect strain-specific resistances released. Incorrect deductions are possible during phylogenetic analysis of plant virus sequences and errors from strain misidentification during molecular and biological virus research activities. A nomenclature system for within-species plant virus phylogenetic group names is needed which avoids such problems. We suggest replacing all other naming approaches with Latinized numerals, restricting biologically based names only to biological strains and removing geographically based names altogether. Our recommendations have implications for biosecurity authorities, diagnostic laboratories, disease-management programs, plant breeders and researchers.


Asunto(s)
Virus de Plantas/clasificación , Terminología como Asunto , Virología/normas , Geografía , Especificidad del Huésped , Virus de Plantas/fisiología
17.
Plant Dis ; 100(7): 1261-1270, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30686210

RESUMEN

Systemic hypersensitive resistance (SHR) caused by Turnip mosaic virus (TuMV) was studied by light microscopy and histochemical analysis in stem cross sections of Brassica juncea (Indian mustard) plants. Ten TuMV isolates were inoculated to leaves of susceptible line JM 06006, cv. Oasis CI, which carries TuMV systemic hypersensitivity gene TuRBJU 01, and F3 progeny plants obtained from a cross between them. Systemic mosaic (SM) symptoms were induced by all 10 isolates in plants of JM 06006, and by resistance-breaking isolate NSW-3 in all cv. Oasis CI and F3 plants. With the other nine isolates, cv. Oasis CI plants developed SHR while F3 progeny plants segregated for both phenotypes; mock-inoculated control plants never became infected. Presence of SHR did not delay systemic invasion as this commenced within 2 hours after inoculation (hai) and was almost complete by 72 hai regardless of whether plants subsequently developed SHR or SM. When stem cross sections sampled 9 to 12 days after inoculation were examined for the plant defense responses, phloem necrosis, hydrogen peroxide accumulation, and additional lignin deposition, sections from plants with SHR demonstrated all of these characteristics, but sections from plants with SM or mock-inoculation did not. Based on consolidated data from all isolates except NSW-3, stems developing SHR had significantly more occluded xylem vessels (P < 0.001) compared with stems from plants developing SM or mock-inoculated plants. Both light microscopy and histochemical tests with phloroglucinol-HCl and toluidine blue O indicated that the xylem occlusions could be gels. Thus, phloem necrosis, xylem occlusion, lignification, and hydrogen peroxide accumulation were all associated with the SHR in B. juncea plants carrying TuMV hypersensitivity gene TuRBJU 01. In addition, virus inclusion bodies were fewer in sections from plants with SHR. Phloem necrosis was apparently acting as the primary cause of SHR and xylem occlusion as an important secondary cause.

18.
Viruses ; 16(1)2024 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-38257844

RESUMEN

Here, we review the research undertaken since the 1950s in Australia's grain cropping regions on seed-borne virus diseases of cool-season pulses caused by alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). We present brief background information about the continent's pulse industry, virus epidemiology, management principles and future threats to virus disease management. We then take a historical approach towards all past investigations with these two seed-borne pulse viruses in the principal cool-season pulse crops grown: chickpea, faba bean, field pea, lentil, narrow-leafed lupin and white lupin. With each pathosystem, the main focus is on its biology, epidemiology and management, placing particular emphasis on describing field and glasshouse experimentation that enabled the development of effective phytosanitary, cultural and host resistance control strategies. Past Australian cool-season pulse investigations with AMV and CMV in the less commonly grown species (vetches, narbon bean, fenugreek, yellow and pearl lupin, grass pea and other Lathyrus species) and those with the five less important seed-borne pulse viruses also present (broad bean stain virus, broad bean true mosaic virus, broad bean wilt virus, cowpea mild mottle virus and peanut mottle virus) are also summarized. The need for future research is emphasized, and recommendations are made regarding what is required.


Asunto(s)
Virus del Mosaico de la Alfalfa , Comovirus , Cucumovirus , Infecciones por Citomegalovirus , Medicago sativa , Estaciones del Año , Australia , Semillas
19.
Plants (Basel) ; 12(13)2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37447082

RESUMEN

Four lupin species, Lupinus angustifolius, L. albus, L. luteus, and L. mutabilis, are grown as cool-season grain legume crops. Fifteen viruses infect them. Two of these, bean yellow mosaic virus (BYMV) and cucumber mosaic virus (CMV), cause diseases that threaten grain lupin production. Phytosanitary and cultural control measures are mainly used to manage them. However, breeding virus-resistant lupin cultivars provides an additional management approach. The need to develop this approach stimulated a search for virus resistance sources amongst cultivated lupin species and their wild relatives. This review focuses on the progress made in optimizing virus resistance screening procedures, identifying host resistances to BYMV, CMV, and additional viral pathogen alfalfa mosaic virus (AMV), and the inclusion of BYMV and CMV resistance within lupin breeding programs. The resistance types found in different combinations of virus and grain lupin species include localized hypersensitivity, systemic hypersensitivity, extreme resistance, and partial resistance to aphid or seed transmission. These resistances provide a key enabler towards fast tracking gains in grain lupin breeding. Where studied, their inheritance depended upon single dominant genes or was polygenic. Although transgenic virus resistance was incorporated into L. angustifolius and L. luteus successfully, it proved unstable. Priorities for future research are discussed.

20.
Viruses ; 15(5)2023 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-37243190

RESUMEN

In 2020, 264 samples were collected from potato fields in the Turkish provinces of Bolu, Afyon, Kayseri and Nigde. RT-PCR tests, with primers which amplified its coat protein (CP), detected potato virus S (PVS) in 35 samples. Complete CP sequences were obtained from 14 samples. Phylogenetic analysis using non-recombinant sequences of (i) the 14 CP's, another 8 from Tokat province and 73 others from GenBank; and (ii) 130 complete ORF, RdRp and TGB sequences from GenBank, found that they fitted within phylogroups, PVSI, PVSII or PVSIII. All Turkish CP sequences were in PVSI, clustering within five subclades. Subclades 1 and 4 were in three to four provinces, whereas 2, 3 and 5 were in one province each. All four genome regions were under strong negative selection constraints (ω = 0.0603-0.1825). Considerable genetic variation existed amongst PVSI and PVSII isolates. Three neutrality test methods showed PVSIII remained balanced whilst PVSI and PVSII underwent population expansion. The high fixation index values assigned to all PVSI, PVSII and PVSIII comparisons supported subdivision into three phylogroups. As it spreads more readily by aphid and contact transmission, and may elicit more severe symptoms in potato, PVSII spread constitutes a biosecurity threat for countries still free from it.


Asunto(s)
Bioaseguramiento , Solanum tuberosum , Filogenia , Secuencia de Aminoácidos , Enfermedades de las Plantas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA