Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36768403

RESUMEN

The serotonin and kappa opioid receptor (KOR) systems are strongly implicated in disorders of negative affect, such as anxiety and depression. KORs expressed on axon terminals inhibit the release of neurotransmitters, including serotonin. The substantia nigra pars reticulata (SNr) is involved in regulating affective behaviors. It receives the densest serotonergic innervation in the brain and has high KOR expression; however, the influence of KORs on serotonin transmission in this region is yet to be explored. Here, we used ex vivo fast-scan cyclic voltammetry (FSCV) to investigate the effects of a KOR agonist, U50, 488 (U50), and a selective serotonin reuptake inhibitor, escitalopram, on serotonin release and reuptake in the SNr. U50 alone reduced serotonin release and uptake, and escitalopram alone augmented serotonin release and slowed reuptake, while pretreatment with U50 blunted both the release and uptake effects of escitalopram. Here, we show that the KOR influences serotonin signaling in the SNr in multiple ways and short-term activation of the KOR alters serotonin responses to escitalopram. These interactions between KORs and serotonin may contribute to the complexity in the responses to treatments for disorders of negative affect. Ultimately, the KOR system may prove to be a promising pharmacological target, alongside traditional antidepressant treatments.


Asunto(s)
Porción Reticular de la Sustancia Negra , Receptores Opioides kappa , Ratones , Animales , Receptores Opioides kappa/metabolismo , Serotonina/metabolismo , Porción Reticular de la Sustancia Negra/metabolismo , Escitalopram , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Sustancia Negra/metabolismo
2.
J Neurochem ; 160(6): 598-612, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34265080

RESUMEN

Striatal dopamine release is key for learning and motivation and is composed of subregions including the dorsal striatum (DS), nucleus accumbens core, and the nucleus accumbens shell. Spontaneously occurring dopamine release was compared across these subregions. Dopamine release/uptake dynamics differ across striatal subregions, with dopamine transient release amplitude and release frequency greatest in male mice, and the largest signals observed in the DS. Surprisingly, female mice exhibited little regional differences in dopamine release for DS and nucleus accumbens core regions, but lower release in the nucleus accumbens shell. Blocking voltage-gated K+ channel (Kv channels) with 4-aminopyridine enhanced dopamine detection without affecting reuptake. The 4-aminopyridine effects were greatest in ventral regions of female mice, suggesting regional differences in Kv channel expression. The dopamine transporter blocker cocaine also enhanced detection across subregions in both sexes, with greater overall increased release in females than males. Thus, sex differences in dopamine transmission are apparent and likely include differences in the Kv channel and dopamine transporter function. The lack of regional differences in dopamine release observed in females indicates differential regulation of spontaneous and evoked dopamine release.


Asunto(s)
Cocaína , Dopamina , 4-Aminopiridina/metabolismo , Animales , Cocaína/metabolismo , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Dopamina/metabolismo , Antagonistas de Dopamina , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Femenino , Masculino , Ratones , Núcleo Accumbens/metabolismo , Caracteres Sexuales
3.
Int J Mol Sci ; 23(15)2022 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-35897682

RESUMEN

Administration of heroin results in the engagement of multiple brain regions and the rewarding and addictive effects are mediated, at least partially, through activation of the mesolimbic dopamine system. However, less is known about dopamine system function following chronic exposure to heroin. Withdrawal from chronic heroin exposure is likely to drive a state of low dopamine in the nucleus accumbens (NAc), as previously observed during withdrawal from other drug classes. Thus, we aimed to investigate alterations in NAc dopamine terminal function following chronic heroin self-administration to identify a mechanism for dopaminergic adaptations. Adult male Long Evans rats were trained to self-administer heroin (0.05 mg/kg/inf, IV) and then placed on a long access (FR1, 6-h, unlimited inf, 0.05 mg/kg/inf) protocol to induce escalation of intake. Following heroin self-administration, rats had decreased basal extracellular levels of dopamine and blunted dopamine response following a heroin challenge (0.1 mg/kg/inf, IV) in the NAc compared to saline controls. FSCV revealed that heroin-exposed rats exhibited reduced stimulated dopamine release during tonic-like, single-pulse stimulations, but increased phasic-like dopamine release during multi-pulse stimulation trains (5 pulses, 5-100 Hz) in addition to an altered dynamic range of release stimulation intensities when compared to controls. Further, we found that presynaptic D3 autoreceptor and kappa-opioid receptor agonist responsivity were increased following heroin self-administration. These results reveal a marked low dopamine state following heroin exposure and suggest the combination of altered dopamine release dynamics may contribute to increased heroin seeking.


Asunto(s)
Dopamina , Heroína , Animales , Dopamina/farmacología , Heroína/efectos adversos , Masculino , Núcleo Accumbens , Ratas , Ratas Long-Evans , Autoadministración
4.
Eur J Neurosci ; 52(11): 4546-4562, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32725894

RESUMEN

Regional alterations in kinetics of catecholamine uptake are due in part to variations in clearance mechanisms. The rate of clearance is a critical determinant of the strength of catecholamine signaling. Catecholamine transmission in the nucleus accumbens core (NAcc) and basolateral amygdala (BLA) is of particular interest due to involvement of these regions in cognition and motivation. Previous work has shown that catecholamine clearance in the NAcc is largely mediated by the dopamine transporter (DAT), but clearance in the BLA is less DAT-dependent. A growing body of literature suggests that organic cation transporter 3 (OCT3) also contributes to catecholamine clearance in both regions. Consistent with different clearance mechanisms between regions, catecholamine clearance is more rapid in the NAcc than in the BLA, though mechanisms underlying this have not been resolved. We compared the expression of DAT and OCT3 and their contributions to catecholamine clearance in the NAcc and BLA. We found DAT protein levels were ~ 4-fold higher in the NAcc than in the BLA, while OCT3 protein expression was similar between the two regions. Immunofluorescent labeling of the two transporters in brain sections confirmed these findings. Ex vivo voltammetry demonstrated that the magnitude of catecholamine release was greater, and the clearance rate was faster in the NAcc than in the BLA. Additionally, catecholamine clearance in the BLA was more sensitive to the OCT3 inhibitor corticosterone, while clearance in the NAcc was more cocaine sensitive. These distinctions in catecholamine clearance may underlie differential effects of catecholamines on behavioral outputs mediated by these regions.


Asunto(s)
Complejo Nuclear Basolateral , Núcleo Accumbens , Complejo Nuclear Basolateral/metabolismo , Catecolaminas , Cationes , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Núcleo Accumbens/metabolismo
5.
Brain Behav Immun ; 88: 166-173, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32240763

RESUMEN

Alterations in dopamine (DA) signaling and reductions in functional connectivity (FC; a measure of temporal correlations of activity between different brain regions) within dopaminergic reward pathways are implicated in the etiology of psychopathology and have been associated with increased concentrations of inflammatory markers, including C-reactive protein. Peripheral and central inflammatory cytokines that have been shown to disrupt DA signaling and corticostriatal FC are associated with C-reactive protein, an acute phase reactant that is used translationally as a marker of systemic inflammation. One factor that can significantly increase systemic inflammation to produce neuroadaptations in reward pathways is a diet that results in fat mass accumulation (e.g. obesogenic diet). The current study in female rhesus monkeys maintained in a standard laboratory chow (n = 18) or on obesogenic diet (n = 16) for 12-months tested the hypothesis that an obesogenic diet would alter central DA and homovanillic acid (HVA) concentrations, and be associated with increased CRP concentrations and decreased FC between corticostriatal regions at 12-months following dietary intervention. We specifically assessed FC between the nucleus accumbens (NAcc) and two sub-regions of the prefrontal cortex (PFC) previously associated with CRP concentrations, the ventromedial PFC (vmPFC) and the orbitofrontal cortex (OFC), which are also involved in emotional and motivational salience assessment, and in goal-directed behavior, impulse control and the salience/value of food, respectively. Results showed that CSF DA concentrations were decreased (p = 0.002), HVA:DA ratios were increased (p = 0.016), and body mass index was increased (p = 0.047) over the 12-months of consuming an obesogenic diet. At 12-months, females maintained in the obesogenic diet exhibited higher CRP concentrations than females consuming chow-only (p = 0.008). Linear regression analyses revealed significant CRP by dietary condition interactions on DA concentrations (ß = -5.10; p = 0.017) and HVA:DA ratios (ß = 5.14; p = 0.029). Higher CRP concentrations were associated with lower CSF DA concentrations (r = -0.69; p = 0.004) and greater HVA:DA ratios only in females maintained in the obesogenic dietary condition (r = 0.58; p = 0.024). Resting-state magnetic resonance neuroimaging (rs-fMRI) in a subset of females from each diet condition (n = 8) at 12-months showed that higher CRP concentrations were associated decreased FC between the NAcc and subregions of the prefrontal cortex (PFC; p's < 0.05). Decreased FC between the NAcc and PFC subregions were also associated with lower concentrations of DA and greater HVA:DA ratios (p's < 0.05). Overall, these data suggest that increased inflammatory signaling driving heightened CRP levels may mediate the adverse consequences of obesogenic diets on DA neurochemistry and corticostriatal connectivity.


Asunto(s)
Proteína C-Reactiva , Dopamina , Animales , Dieta , Femenino , Macaca mulatta , Núcleo Accumbens , Recompensa
6.
J Neurosci ; 38(2): 484-497, 2018 01 10.
Artículo en Inglés | MEDLINE | ID: mdl-29175958

RESUMEN

Cocaine abuse disrupts dopamine system function, and reduces cocaine inhibition of the dopamine transporter (DAT), which results in tolerance. Although tolerance is a hallmark of cocaine addiction and a DSM-V criterion for substance abuse disorders, the molecular adaptations producing tolerance are unknown, and testing the impact of DAT changes on drug taking behaviors has proven difficult. In regard to treatment, amphetamine has shown efficacy in reducing cocaine intake; however, the mechanisms underlying these effects have not been explored. The goals of this study were twofold; we sought to (1) identify the molecular mechanisms by which cocaine exposure produces tolerance and (2) determine whether amphetamine-induced reductions in cocaine intake are connected to these mechanisms. Using cocaine self-administration and fast-scan cyclic voltammetry in male rats, we show that low-dose, continuous amphetamine treatment, during self-administration or abstinence, completely reversed cocaine tolerance. Amphetamine treatment also reversed escalated cocaine intake and decreased motivation to obtain cocaine as measured in a behavioral economics task, thereby linking tolerance to multiple facets of cocaine use. Finally, using fluorescence resonance energy transfer imaging, we found that cocaine tolerance is associated with the formation of DAT-DAT complexes, and that amphetamine disperses these complexes. In addition to extending our basic understanding of DATs and their role in cocaine reinforcement, we serendipitously identified a novel therapeutic target: DAT oligomer complexes. We show that dispersion of oligomers is concomitant with reduced cocaine intake, and propose that pharmacotherapeutics aimed at these complexes may have potential for cocaine addiction treatment.SIGNIFICANCE STATEMENT Tolerance to cocaine's subjective effects is a cardinal symptom of cocaine addiction and a DSM-V criterion for substance abuse disorders. However, elucidating the molecular adaptions that produce tolerance and determining its behavioral impact have proven difficult. Using cocaine self-administration in rats, we link tolerance to cocaine effects at the dopamine transporter (DAT) with aberrant cocaine-taking behaviors. Further, tolerance was associated with multi-DAT complexes, which formed after cocaine exposure. Treatment with amphetamine deconstructed DAT complexes, reversed tolerance, and decreased cocaine seeking. These data describe the behavioral consequence of cocaine tolerance, provide a putative mechanism for its development, and suggest that compounds that disperse DAT complexes may be efficacious treatments for cocaine addiction.


Asunto(s)
Anfetamina/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Tolerancia a Medicamentos/fisiología , Animales , Masculino , Ratas , Ratas Sprague-Dawley
7.
Eur J Neurosci ; 50(4): 2740-2749, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31111573

RESUMEN

Despite decades of research into the neurobiological basis of cocaine abuse, pharmacotherapeutic treatments for cocaine addiction have been largely ineffective. Converging evidence from preclinical research and from outpatient clinical trials suggest that treatment with amphetamine is efficacious in reducing cocaine intake. Although it has been suggested that amphetamine treatment reduces cocaine intake as an agonist replacement therapy, we have shown recently that multiple aspects of dopamine signaling are altered by cocaine self-administration and returned to pre-cocaine function by amphetamine treatment in the nucleus accumbens of male rats. Here, we sought to determine if these effects were also evident in female subjects, and across regions of the striatum. Female rats performed 5 days of cocaine self-administration (1.5 mg kg-1  inj-1 , 40 inj/day) and were treated with a single amphetamine (0.56 mg/kg) or saline infusion 1 hr prior to killing. We then used ex vivo fast-scan cyclic voltammetry in the nucleus accumbens core or dorsolateral caudate-putamen to examine dopamine signaling and cocaine potency. We found that in the nucleus accumbens core, cocaine self-administration decreased dopamine uptake rate and cocaine potency, and both alterations were restored by amphetamine treatment. In the dorsolateral caudate-putamen, neither cocaine self-administration nor amphetamine treatment altered dopamine uptake; however, cocaine potency was decreased by self-administration and returned to control levels by amphetamine. Together, these findings support a role for amphetamine treatment for cocaine addiction outside of agonist replacement therapy, and suggest that the development of cocaine tolerance is similar across sexes.


Asunto(s)
Anfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Cocaína/farmacología , Cuerpo Estriado/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Animales , Cuerpo Estriado/efectos de los fármacos , Tolerancia a Medicamentos , Femenino , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Putamen/efectos de los fármacos , Putamen/metabolismo , Ratas , Ratas Sprague-Dawley , Autoadministración
8.
Handb Exp Pharmacol ; 248: 213-238, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29675581

RESUMEN

Alcohol use disorders are a leading public health concern, engendering enormous costs in terms of both economic loss and human suffering. These disorders are characterized by compulsive and excessive alcohol use, as well as negative affect and alcohol craving during abstinence. Extensive research has implicated the dopamine system in both the acute pharmacological effects of alcohol and the symptomology of alcohol use disorders that develop after extended alcohol use. Preclinical research has shed light on many mechanisms by which chronic alcohol exposure dysregulates the dopamine system. However, many of the findings are inconsistent across experimental parameters such as alcohol exposure length, route of administration, and model organism. We propose that the dopaminergic alterations driving the core symptomology of alcohol use disorders are likely to be relatively stable across experimental settings. Recent work has been aimed at using multiple model organisms (mouse, rat, monkey) across various alcohol exposure procedures to search for commonalities. Here, we review recent advances in our understanding of the effects of chronic alcohol use on the dopamine system by highlighting findings that are consistent across experimental setting and species.


Asunto(s)
Alcoholismo/fisiopatología , Dopamina , Etanol/farmacología , Consumo de Bebidas Alcohólicas , Animales , Humanos , Ratones , Ratas
9.
Mol Cell Neurosci ; 85: 93-104, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28942046

RESUMEN

Dopamine signaling encodes reward learning and motivated behavior through modulation of synaptic signaling in the nucleus accumbens, and aberrations in these processes are thought to underlie obsessive behaviors associated with alcohol abuse. The nucleus accumbens is divided into core and shell sub-regions with overlapping but also divergent contributions to behavior. Here we optogenetically targeted dopamine projections to the accumbens allowing us to isolate stimulation of dopamine terminals ex vivo. We applied 5 pulse (phasic) light stimulations to probe intrinsic differences in dopamine release parameters across regions. Also, we exposed animals to 4weeks of chronic intermittent ethanol vapor and measured phasic release. We found that initial release probability, uptake rate and autoreceptor inhibition were greater in the accumbens core compared to the shell, yet the shell showed greater phasic release ratios. Following chronic ethanol, uptake rates were increased in the core but not the shell, suggesting region-specific neuronal adaptations. Conversely, kappa opioid receptor function was upregulated in both regions to a similar extent, suggesting a local mechanism of kappa opioid receptor regulation that is generalized across the nucleus accumbens. These data suggest that dopamine axons in the nucleus accumbens core and shell display differences in intrinsic release parameters, and that ethanol-induced adaptations to dopamine neuron terminal fields may not be homogeneous. Also, chronic ethanol exposure induces an upregulation in kappa opioid receptor function, providing a mechanism for potential over-inhibition of accumbens dopamine signaling which may negatively impact downstream synaptic function and ultimately bias choice towards previously reinforced alcohol use behaviors.


Asunto(s)
Alcoholismo/metabolismo , Depresores del Sistema Nervioso Central/toxicidad , Dopamina/metabolismo , Etanol/toxicidad , Núcleo Accumbens/metabolismo , Animales , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Técnicas de Sustitución del Gen , Masculino , Ratones , Ratones Endogámicos C57BL , Núcleo Accumbens/efectos de los fármacos , Optogenética , Técnicas de Cultivo de Órganos , Receptores Opioides kappa/biosíntesis , Transmisión Sináptica/efectos de los fármacos
10.
J Neurosci ; 36(30): 7807-16, 2016 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-27466327

RESUMEN

UNLABELLED: Cocaine addiction is a debilitating neuropsychiatric disorder characterized by uncontrolled cocaine intake, which is thought to be driven, at least in part, by cocaine-induced deficits in dopamine system function. A decreased ability of cocaine to elevate dopamine levels has been repeatedly observed as a consequence of cocaine use in humans, and preclinical work has highlighted tolerance to cocaine's effects as a primary determinant in the development of aberrant cocaine taking behaviors. Here we determined that cocaine self-administration in rats produced tolerance to the dopamine transporter-inhibiting effects of cocaine in the nucleus accumbens core, which was normalized following a 14 or 60 d abstinence period; however, although these rats appeared to be similar to controls, a single self-administered infusion of cocaine at the end of abstinence, even after 60 d, fully reinstated tolerance to cocaine's effects. A single cocaine infusion in a naive rat had no effect on cocaine potency, demonstrating that cocaine self-administration leaves the dopamine transporter in a "primed" state, which allows for cocaine-induced plasticity to be reinstated by a subthreshold cocaine exposure. Further, reinstatement of cocaine tolerance was accompanied by decreased cocaine-induced locomotion and escalated cocaine intake despite extended abstinence from cocaine. These data demonstrate that cocaine leaves a long-lasting imprint on the dopamine system that is activated by re-exposure to cocaine. Further, these results provide a potential mechanism for severe cocaine binge episodes, which occur even after sustained abstinence from cocaine, and suggest that treatments aimed at transporter sites may be efficacious in promoting binge termination following relapse. SIGNIFICANCE STATEMENT: Tolerance is a DSM-V criterion for substance abuse disorders. Abusers consistently show reduced subjective effects of cocaine concomitant with reduced effects of cocaine at its main site of action, the dopamine transporter (DAT). Preclinical literature has shown that reduced cocaine potency at the DAT increases cocaine taking, highlighting the key role of tolerance in addiction. Addiction is characterized by cycles of abstinence, often for many months, followed by relapse, making it important to determine possible interactions between abstinence and subsequent drug re-exposure. Using a rodent model of cocaine abuse, we found long-lasting, possibly permanent, cocaine-induced alterations to the DAT, whereby cocaine tolerance is reinstated by minimal drug exposure, even after recovery of DAT function over prolonged abstinence periods.


Asunto(s)
Trastornos Relacionados con Cocaína/fisiopatología , Cocaína/administración & dosificación , Cocaína/envenenamiento , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Plasticidad Neuronal/efectos de los fármacos , Núcleo Accumbens/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Tolerancia a Medicamentos , Locomoción/efectos de los fármacos , Depresión Sináptica a Largo Plazo , Masculino , Núcleo Accumbens/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Autoadministración
11.
Addict Biol ; 22(6): 1695-1705, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27480648

RESUMEN

The hypocretin/orexin (HCRT) system is implicated in reward and reinforcement processes through actions on the mesolimbic dopamine (DA) system. Here we provide evidence for the relationship between HCRT and DA in vivo in anesthetized and freely moving mice. The ability of cocaine to elicit reward-related behaviors in mice lacking the HCRT prepro-peptide (HCRT knock-out; KO) and wild-type controls was determined using conditioned place preference. Using a combination of microdialysis and in vivo fast scan cyclic voltammetry in anesthetized and freely moving mice, we investigated the underlying role of HCRT in the regulation of DA release and uptake. We show that, unlike wild-type mice, HCRT KO mice fail to develop characteristic conditioned place preference for cocaine. These mice also demonstrated reduced DA release and uptake under baseline conditions in both anesthetized and freely moving experiments. Further, diminished DA signaling in HCRT KO mice persists following administration of cocaine. These findings indicate that HCRT is essential for the expression of behaviors associated with the rewarding effects of cocaine, and suggest that HCRT regulation of reward and reinforcement may be related to disruptions to DA neurotransmission.


Asunto(s)
Conducta Animal/efectos de los fármacos , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Masculino , Ratones , Ratones Noqueados , Modelos Animales , Orexinas , Transducción de Señal
12.
Proc Natl Acad Sci U S A ; 111(26): E2751-9, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24979798

RESUMEN

The majority of neurotransmitter systems shows variations in state-dependent cell firing rates that are mechanistically linked to variations in extracellular levels, or tone, of their respective neurotransmitter. Diurnal variation in dopamine tone has also been demonstrated within the striatum, but this neurotransmitter is unique, in that variation in dopamine tone is likely not related to dopamine cell firing; this is largely because of the observation that midbrain dopamine neurons do not display diurnal fluctuations in firing rates. Therefore, we conducted a systematic investigation of possible mechanisms for the variation in extracellular dopamine tone. Using microdialysis and fast-scan cyclic voltammetry in rats, as well as wild-type and dopamine transporter (DAT) knock-out mice, we demonstrate that dopamine uptake through the DAT and the magnitude of subsecond dopamine release is inversely related to the magnitude of extracellular dopamine tone. We investigated dopamine metabolism, uptake, release, D2 autoreceptor sensitivity, and tyrosine hydroxylase expression and activity as mechanisms for this variation. Using this approach, we have pinpointed the DAT as a critical governor of diurnal variation in extracellular dopamine tone and, as a consequence, influencing the magnitude of electrically stimulated dopamine release. Understanding diurnal variation in dopamine tone is critical for understanding and treating the multitude of psychiatric disorders that originate from perturbations of the dopamine system.


Asunto(s)
Ritmo Circadiano/fisiología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Dopamina/metabolismo , Espacio Extracelular/metabolismo , Animales , Western Blotting , Cromatografía Líquida de Alta Presión , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Masculino , Ratones , Ratones Noqueados , Microdiálisis , Ratas , Ratas Sprague-Dawley , Tirosina 3-Monooxigenasa/metabolismo
13.
J Neurosci ; 35(15): 5959-68, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25878269

RESUMEN

The dopaminergic projections from the ventral midbrain to the striatum have long been implicated in mediating motivated behaviors and addiction. Previously it was demonstrated that κ-opioid receptor (KOR) signaling in the striatum plays a critical role in the increased reinforcing efficacy of ethanol following ethanol vapor exposure in rodent models. Although rodents have been used extensively to determine the neurochemical consequences of chronic ethanol exposure, establishing high levels of voluntary drinking in these models has proven difficult. Conversely, nonhuman primates exhibit similar intake and pattern to humans in regard to drinking. Here we examine the effects of chronic voluntary ethanol self-administration on dopamine neurotransmission and the ability of KORs to regulate dopamine release in the dorsolateral caudate (DLC) and nucleus accumbens (NAc) core. Using voltammetry in brain slices from cynomolgus macaques after 6 months of ad libitum ethanol drinking, we found increased KOR sensitivity in both the DLC and NAc. The magnitude of ethanol intake predicted increases in KOR sensitivity in the NAc core, but not the DLC. Additionally, ethanol drinking increased dopamine release and uptake in the NAc, but decreased both of these measures in the DLC. These data suggest that chronic daily drinking may result in regionally distinct disruptions of striatal outputs. In concert with previous reports showing increased KOR regulation of drinking behaviors induced by ethanol exposure, the strong relationship between KOR activity and voluntary ethanol intake observed here gives further support to the hypothesis that KORs may provide a promising pharmacotherapeutic target in the treatment of alcoholism.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Núcleo Caudado/metabolismo , Depresores del Sistema Nervioso Central/administración & dosificación , Dopamina/metabolismo , Etanol/administración & dosificación , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Consumo de Bebidas Alcohólicas/fisiopatología , Animales , Depresores del Sistema Nervioso Central/sangre , Electroquímica , Etanol/sangre , Macaca fascicularis , Masculino , Autoadministración , Estadísticas no Paramétricas
14.
J Neurochem ; 138(6): 821-9, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27393374

RESUMEN

Cocaine is a commonly abused central nervous system stimulant that enhances dopamine (DA) neurotransmission through its ability to block dopamine transporters (DATs). Recent evidence suggests there may be an interaction between DATs and D2/D3 autoreceptors that modulates cocaine's effects. The purpose of this study was to explore how D2/D3 autoreceptors modulate the ability of cocaine to inhibit DA uptake through DATs on pre-synaptic DA terminals. Using fast-scan cyclic voltammetry in brain slices containing the nucleus accumbens core from male and female C57BL/6J mice, we first sought to examine the effects of global autoreceptor blockade using the non-selective D2/D3 autoreceptor antagonist, raclopride. We found that the ability of cocaine to inhibit DA uptake was increased by raclopride and that this effect was consistent across sexes. Furthermore, using D2 (L-741,626) or D3 (SB-277011-A) autoreceptor selective antagonists, we discovered that blockade of D3, but not D2, autoreceptors was responsible for the increased cocaine potency. Alterations in cocaine potency were attributable to alterations in uptake inhibition, rather than cocaine effects on vesicular DA release, suggesting that these results may be a product of a functional D3/DAT interaction apart from the canonical inhibitory actions of D3 autoreceptors on DA release. In addition, application of D2 (sumanirole) and D3 (PD 128907) autoreceptor-specific agonists had inverse effects, whereby D2 autoreceptor activation decreased cocaine potency and D3 autoreceptor activation had no effect. Together, these data show that DA autoreceptors dynamically regulate cocaine potency at the DAT, which is important for understanding cocaine's rewarding and addictive properties. We propose a model whereby presynaptic dopamine autoreceptors dynamically modulate cocaine potency through two separate mechanisms. We demonstrate that D2 agonists decrease cocaine potency, whereas D3 antagonists increase cocaine potency, likely through an allosteric mechanism outside of their canonical actions on dopamine release. These findings give important and novel insight into the contribution of D2/D3 autoreceptors to dopamine transporter function.


Asunto(s)
Autorreceptores/antagonistas & inhibidores , Cocaína/farmacología , Antagonistas de Dopamina/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Inhibidores de Captación de Dopamina/farmacología , Miembro 25 de Receptores de Factores de Necrosis Tumoral/antagonistas & inhibidores , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Indoles/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Nitrilos/farmacología , Piperidinas/farmacología , Racloprida/farmacología , Receptores de Dopamina D2/efectos de los fármacos , Caracteres Sexuales , Tetrahidroisoquinolinas/farmacología
15.
Artículo en Inglés | MEDLINE | ID: mdl-26625893

RESUMEN

BACKGROUND: Chronic ethanol exposure reduces dopamine transmission in the nucleus accumbens, which may contribute to the negative affective symptoms associated with ethanol withdrawal. Kappa opioid receptors have been implicated in withdrawal-induced excessive drinking and anxiety-like behaviors and are known to inhibit dopamine release in the nucleus accumbens. The effects of chronic ethanol exposure on kappa opioid receptor-mediated changes in dopamine transmission at the level of the dopamine terminal and withdrawal-related behaviors were examined. METHODS: Five weeks of chronic intermittent ethanol exposure in male C57BL/6 mice were used to examine the role of kappa opioid receptors in chronic ethanol-induced increases in ethanol intake and marble burying, a measure of anxiety/compulsive-like behavior. Drinking and marble burying were evaluated before and after chronic intermittent ethanol exposure, with and without kappa opioid receptor blockade by nor-binaltorphimine (10mg/kg i.p.). Functional alterations in kappa opioid receptors were assessed using fast scan cyclic voltammetry in brain slices containing the nucleus accumbens. RESULTS: Chronic intermittent ethanol-exposed mice showed increased ethanol drinking and marble burying compared with controls, which was attenuated with kappa opioid receptor blockade. Chronic intermittent ethanol-induced increases in behavior were replicated with kappa opioid receptor activation in naïve mice. Fast scan cyclic voltammetry revealed that chronic intermittent ethanol reduced accumbal dopamine release and increased uptake rates, promoting a hypodopaminergic state of this region. Kappa opioid receptor activation with U50,488H concentration-dependently decreased dopamine release in both groups; however, this effect was greater in chronic intermittent ethanol-treated mice, indicating kappa opioid receptor supersensitivity in this group. CONCLUSIONS: These data suggest that the chronic intermittent ethanol-induced increase in ethanol intake and anxiety/compulsive-like behaviors may be driven by greater kappa opioid receptor sensitivity and a hypodopaminergic state of the nucleus accumbens.


Asunto(s)
Consumo de Bebidas Alcohólicas/metabolismo , Trastornos del Sistema Nervioso Inducidos por Alcohol/metabolismo , Conducta Animal , Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Etanol , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Transmisión Sináptica , Consumo de Bebidas Alcohólicas/efectos adversos , Consumo de Bebidas Alcohólicas/fisiopatología , Consumo de Bebidas Alcohólicas/psicología , Trastornos del Sistema Nervioso Inducidos por Alcohol/fisiopatología , Trastornos del Sistema Nervioso Inducidos por Alcohol/psicología , Analgésicos Opioides/farmacología , Animales , Ansiedad/metabolismo , Ansiedad/fisiopatología , Ansiedad/psicología , Conducta Animal/efectos de los fármacos , Conducta Compulsiva , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Técnicas In Vitro , Masculino , Ratones Endogámicos C57BL , Antagonistas de Narcóticos/farmacología , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/fisiopatología , Receptores Opioides kappa/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/fisiopatología , Síndrome de Abstinencia a Sustancias/psicología , Transmisión Sináptica/efectos de los fármacos
16.
FASEB J ; 29(5): 1960-72, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25630971

RESUMEN

Attention-deficit hyperactivity disorder (ADHD) is estimated to affect 8-12% of school-age children worldwide. ADHD is a complex disorder with significant genetic contributions. However, no single gene has been linked to a significant percentage of cases, suggesting that environmental factors may contribute to ADHD. Here, we used behavioral, molecular, and neurochemical techniques to characterize the effects of developmental exposure to the pyrethroid pesticide deltamethrin. We also used epidemiologic methods to determine whether there is an association between pyrethroid exposure and diagnosis of ADHD. Mice exposed to the pyrethroid pesticide deltamethrin during development exhibit several features reminiscent of ADHD, including elevated dopamine transporter (DAT) levels, hyperactivity, working memory and attention deficits, and impulsive-like behavior. Increased DAT and D1 dopamine receptor levels appear to be responsible for the behavioral deficits. Epidemiologic data reveal that children aged 6-15 with detectable levels of pyrethroid metabolites in their urine were more than twice as likely to be diagnosed with ADHD. Our epidemiologic finding, combined with the recapitulation of ADHD behavior in pesticide-treated mice, provides a mechanistic basis to suggest that developmental pyrethroid exposure is a risk factor for ADHD.


Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/inducido químicamente , Trastorno por Déficit de Atención con Hiperactividad/patología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Nitrilos/toxicidad , Piretrinas/orina , Receptores de Dopamina D1/metabolismo , Adolescente , Animales , Trastorno por Déficit de Atención con Hiperactividad/metabolismo , Reacción de Prevención/efectos de los fármacos , Western Blotting , Estudios de Casos y Controles , Niño , Cromatografía Líquida de Alta Presión , Estudios Transversales , Femenino , Humanos , Insecticidas/toxicidad , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Trastornos de la Memoria/inducido químicamente , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Piretrinas/efectos adversos , Piretrinas/toxicidad
17.
Alcohol Clin Exp Res ; 40(6): 1202-14, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27154240

RESUMEN

Individuals diagnosed with anxiety-related illnesses are at increased risk of developing alcoholism, exhibit a telescoped progression of this disease and fare worse in recovery, relative to alcoholics that do not suffer from a comorbid anxiety disorder. Similarly, preclinical evidence supports the notion that stress and anxiety represent major risk factors for the development of alcohol use disorder (AUD). Despite the importance of understanding the link between anxiety and alcoholism, much remains unknown about the neurobiological substrates underlying this relationship. One stumbling block has been the lack of animal models that reliably reproduce the spectrum of behaviors associated with increased vulnerability to these diseases. Here, we review the literature that has examined the behavioral and neurobiological outcomes of a simple rodent adolescent social isolation procedure and discuss its validity as a model of vulnerability to comorbid anxiety disorders and alcoholism. Recent studies have provided strong evidence that adolescent social isolation of male rats leads to the expression of a variety of behaviors linked with increased vulnerability to anxiety and/or AUD, including deficits in sensory gating and fear extinction, and increases in anxiety measures and ethanol drinking. Neurobiological studies are beginning to identify mesolimbic adaptations that may contribute to the behavioral phenotype engendered by this model. Some of these changes include increased excitability of ventral tegmental area dopamine neurons and pyramidal cells in the basolateral amygdala and significant alterations in baseline and stimulated catecholamine signaling. A growing body of evidence suggests that adolescent social isolation may represent a reliable rodent model of heightened vulnerability to anxiety disorders and alcoholism in male rats. These studies provide initial support for the face, construct, and predictive validity of this model and highlight its utility in identifying neurobiological adaptations associated with increased risk of developing these disorders.


Asunto(s)
Alcoholismo/epidemiología , Alcoholismo/fisiopatología , Trastornos de Ansiedad/epidemiología , Encéfalo/fisiología , Aislamiento Social/psicología , Alcoholismo/psicología , Animales , Trastornos de Ansiedad/psicología , Comorbilidad , Modelos Animales de Enfermedad , Humanos
18.
Int J Mol Sci ; 17(8)2016 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-27472317

RESUMEN

The development of pharmacotherapeutics that reduce relapse to alcohol drinking in patients with alcohol dependence is of considerable research interest. Preclinical data support a role for nucleus accumbens (NAc) κ opioid receptors (KOR) in chronic intermittent ethanol (CIE) exposure-induced increases in ethanol intake. Nalmefene, a high-affinity KOR partial agonist, reduces drinking in at-risk patients and relapse drinking in rodents, potentially due to its effects on NAc KORs. However, the effects of nalmefene on accumbal dopamine transmission and KOR function are poorly understood. We investigated the effects of nalmefene on dopamine transmission and KORs using fast scan cyclic voltammetry in NAc brain slices from male C57BL/6J mice following five weeks of CIE or air exposure. Nalmefene concentration-dependently reduced dopamine release similarly in air and CIE groups, suggesting that dynorphin tone may not be present in brain slices. Further, nalmefene attenuated dopamine uptake rates to a greater extent in brain slices from CIE-exposed mice, suggesting that dopamine transporter-KOR interactions may be fundamentally altered following CIE. Additionally, nalmefene reversed the dopamine-decreasing effects of a maximal concentration of a KOR agonist selectively in brain slices of CIE-exposed mice. It is possible that nalmefene may attenuate withdrawal-induced increases in ethanol consumption by modulation of dopamine transmission through KORs.


Asunto(s)
Dopamina/metabolismo , Etanol/administración & dosificación , Naltrexona/análogos & derivados , Antagonistas de Narcóticos/farmacología , Núcleo Accumbens/metabolismo , Receptores Opioides kappa/metabolismo , Animales , Depresores del Sistema Nervioso Central/administración & dosificación , Masculino , Ratones , Ratones Endogámicos C57BL , Naltrexona/farmacología , Núcleo Accumbens/efectos de los fármacos
19.
J Neurosci ; 34(16): 5575-82, 2014 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-24741047

RESUMEN

In light of recent studies suggesting that amphetamine (AMPH) increases electrically evoked dopamine release ([DA]o), we examined discrepancies between these findings and literature that has demonstrated AMPH-induced decreases in [DA]o. The current study has expanded the inventory of AMPH actions by defining two separate mechanisms of AMPH effects on [DA]o at high and low doses, one dopamine transporter (DAT) independent and one DAT dependent, respectively. AMPH concentrations were measured via microdialysis in rat nucleus accumbens after intraperitoneal injections of 1 and 10 mg/kg and yielded values of ∼10 and 200 nM, respectively. Subsequently, voltammetry in brain slices was used to examine the effects of low (10 nM), moderate (100 nM), and high (10 µM) concentrations of AMPH across a range of frequency stimulations (one pulse; five pulses, 20 Hz; 24 pulses, 60 Hz). We discovered biphasic, concentration-dependent effects in WT mice, in which AMPH increased [DA]o at low concentrations and decreased [DA]o at high concentrations across all stimulation types. However, in slices from DAT-KO mice, [DA]o was decreased by all concentrations of AMPH, demonstrating that AMPH-induced increases in [DA]o are DAT dependent, whereas the decreases at high concentrations are DAT independent. We propose that low AMPH concentrations are insufficient to disrupt vesicular sequestration, and therefore AMPH acts solely as a DAT inhibitor to increase [DA]o. When AMPH concentrations are high, the added mechanism of vesicular depletion leads to reduced [DA]o. The biphasic mechanisms observed here confirm and extend the traditional actions of AMPH, but do not support mechanisms involving increased exocytotic release.


Asunto(s)
Anfetamina/farmacología , Fenómenos Biofísicos/efectos de los fármacos , Inhibidores de Captación de Dopamina/farmacología , Dopamina/metabolismo , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Anfetamina/metabolismo , Animales , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/deficiencia , Relación Dosis-Respuesta a Droga , Fenfluramina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Técnicas In Vitro , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratas , Serotoninérgicos/farmacología , Factores de Tiempo
20.
J Neurochem ; 134(5): 833-44, 2015 09.
Artículo en Inglés | MEDLINE | ID: mdl-26011081

RESUMEN

The nucleus accumbens is highly heterogeneous, integrating regionally distinct afferent projections and accumbal interneurons, resulting in diverse local microenvironments. Dopamine (DA) neuron terminals similarly express a heterogeneous collection of terminal receptors that modulate DA signaling. Cyclic voltammetry is often used to probe DA terminal dynamics in brain slice preparations; however, this method traditionally requires electrical stimulation to induce DA release. Electrical stimulation excites all of the neuronal processes in the stimulation field, potentially introducing simultaneous, multi-synaptic modulation of DA terminal release. We used optogenetics to selectively stimulate DA terminals and used voltammetry to compare DA responses from electrical and optical stimulation of the same area of tissue around a recording electrode. We found that with multiple pulse stimulation trains, optically stimulated DA release increasingly exceeded that of electrical stimulation. Furthermore, electrical stimulation produced inhibition of DA release across longer duration stimulations. The GABAB antagonist, CGP 55845, increased electrically stimulated DA release significantly more than light stimulated release. The nicotinic acetylcholine receptor antagonist, dihydro-ß-erythroidine hydrobromide, inhibited single pulse electrically stimulated DA release while having no effect on optically stimulated DA release. Our results demonstrate that electrical stimulation introduces local multi-synaptic modulation of DA release that is absent with optogenetically targeted stimulation.


Asunto(s)
Dopamina/metabolismo , Neuronas Dopaminérgicas/metabolismo , Estimulación Eléctrica , Núcleo Accumbens/citología , Optogenética , Terminales Presinápticos/metabolismo , Acetilcolina/farmacología , Animales , Artefactos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Channelrhodopsins , Neuronas Colinérgicas/efectos de los fármacos , Neuronas Colinérgicas/fisiología , Neuronas Dopaminérgicas/efectos de los fármacos , Antagonistas de Receptores de GABA-B/farmacología , Neuronas GABAérgicas/efectos de los fármacos , Neuronas GABAérgicas/fisiología , Técnicas de Sustitución del Gen , Interneuronas/efectos de los fármacos , Interneuronas/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Microelectrodos , Proteínas del Tejido Nervioso/biosíntesis , Proteínas del Tejido Nervioso/genética , Núcleo Accumbens/metabolismo , Ácidos Fosfínicos/farmacología , Terminales Presinápticos/efectos de los fármacos , Regiones Promotoras Genéticas , Propanolaminas/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/fisiología , Tirosina 3-Monooxigenasa/genética , Área Tegmental Ventral/metabolismo , Ácido gamma-Aminobutírico/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA