Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 118(2)2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33431568

RESUMEN

Reports of declines in biomass of flying insects have alarmed the world in recent years. However, how biomass declines reflect biodiversity loss is still an open question. Here, we analyze the abundance (19,604 individuals) of 162 hoverfly species (Diptera: Syrphidae), at six locations in German nature reserves in 1989 and 2014, and generalize the results with a model varying decline rates of common vs. rare species. We show isometric decline rates between total insect biomass and total hoverfly abundance and a scale-dependent decline in hoverfly species richness, ranging between -23% over the season to -82% at the daily level. We constructed a theoretical null model to explore how strong declines in total abundance translate to changing rank-abundance curves, species persistence, and diversity measures. Observed persistence rates were disproportionately lower than expected for species of intermediate abundance, while the rarest species showed decline and appearance rates consistent with random expectation. Our results suggest that large insect biomass declines are predictive of insect diversity declines. Under current threats, even the more common species are in peril, calling for a reevaluation of hazards and conservation strategies that traditionally target already rare and endangered species only.


Asunto(s)
Biodiversidad , Biomasa , Dípteros , Modelos Estadísticos , Animales , Extinción Biológica , Alemania
2.
Proc Natl Acad Sci U S A ; 116(19): 9658-9664, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-31004061

RESUMEN

Biodiversity loss is a major challenge. Over the past century, the average rate of vertebrate extinction has been about 100-fold higher than the estimated background rate and population declines continue to increase globally. Birth and death rates determine the pace of population increase or decline, thus driving the expansion or extinction of a species. Design of species conservation policies hence depends on demographic data (e.g., for extinction risk assessments or estimation of harvesting quotas). However, an overview of the accessible data, even for better known taxa, is lacking. Here, we present the Demographic Species Knowledge Index, which classifies the available information for 32,144 (97%) of extant described mammals, birds, reptiles, and amphibians. We show that only 1.3% of the tetrapod species have comprehensive information on birth and death rates. We found no demographic measures, not even crude ones such as maximum life span or typical litter/clutch size, for 65% of threatened tetrapods. More field studies are needed; however, some progress can be made by digitalizing existing knowledge, by imputing data from related species with similar life histories, and by using information from captive populations. We show that data from zoos and aquariums in the Species360 network can significantly improve knowledge for an almost eightfold gain. Assessing the landscape of limited demographic knowledge is essential to prioritize ways to fill data gaps. Such information is urgently needed to implement management strategies to conserve at-risk taxa and to discover new unifying concepts and evolutionary relationships across thousands of tetrapod species.


Asunto(s)
Biodiversidad , Evolución Biológica , Conservación de los Recursos Naturales , Extinción Biológica , Vertebrados/fisiología , Animales
3.
J Anim Ecol ; 90(11): 2478-2496, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34437709

RESUMEN

Body condition is an important concept in behaviour, evolution and conservation, commonly used as a proxy of an individual's performance, for example in the assessment of environmental impacts. Although body condition potentially encompasses a wide range of health state dimensions (nutritional, immune or hormonal status), in practice most studies operationalize body condition using a single (univariate) measure, such as fat storage. One reason for excluding additional axes of variation may be that multivariate descriptors of body condition impose statistical and analytical challenges. Structural equation modelling (SEM) is used in many fields to study questions relating multidimensional concepts, and we here explain how SEM is a useful analytical tool to describe the multivariate nature of body condition. In this 'Research Methods Guide' paper, we show how SEM can be used to resolve different challenges in analysing the multivariate nature of body condition, such as (a) variable reduction and conceptualization, (b) specifying the relationship of condition to performance metrics, (c) comparing competing causal hypothesis and (d) including many pathways in a single model to avoid stepwise modelling approaches. We illustrated the use of SEM on a real-world case study and provided R-code of worked examples as a learning tool. We compared the predictive power of SEM with conventional statistical approaches that integrate multiple variables into one condition variable: multiple regression and principal component analyses. We show that model performance on our dataset is higher when using SEM and led to more accurate and precise estimates compared to conventional approaches. We encourage researchers to consider SEM as a flexible framework to describe the multivariate nature of body condition and thus understand how it affects biological processes, thereby improving the value of body condition proxies for predicting organismal performance. Finally, we highlight that it can be useful for other multidimensional ecological concepts as well, such as immunocompetence, oxidative stress and environmental conditions.


Asunto(s)
Análisis de Clases Latentes , Animales , Análisis Multivariante
4.
Nature ; 511(7509): 341-3, 2014 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-25030173

RESUMEN

Recent studies have shown that neonicotinoid insecticides have adverse effects on non-target invertebrate species. Invertebrates constitute a substantial part of the diet of many bird species during the breeding season and are indispensable for raising offspring. We investigated the hypothesis that the most widely used neonicotinoid insecticide, imidacloprid, has a negative impact on insectivorous bird populations. Here we show that, in the Netherlands, local population trends were significantly more negative in areas with higher surface-water concentrations of imidacloprid. At imidacloprid concentrations of more than 20 nanograms per litre, bird populations tended to decline by 3.5 per cent on average annually. Additional analyses revealed that this spatial pattern of decline appeared only after the introduction of imidacloprid to the Netherlands, in the mid-1990s. We further show that the recent negative relationship remains after correcting for spatial differences in land-use changes that are known to affect bird populations in farmland. Our results suggest that the impact of neonicotinoids on the natural environment is even more substantial than has recently been reported and is reminiscent of the effects of persistent insecticides in the past. Future legislation should take into account the potential cascading effects of neonicotinoids on ecosystems.


Asunto(s)
Aves/fisiología , Dieta/veterinaria , Monitoreo del Ambiente , Cadena Alimentaria , Imidazoles/efectos adversos , Insectos , Insecticidas/efectos adversos , Nitrocompuestos/efectos adversos , Agricultura , Animales , Neonicotinoides , Países Bajos , Dinámica Poblacional/estadística & datos numéricos , Contaminantes del Agua/efectos adversos
5.
Ecol Lett ; 22(11): 1957-1975, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31328414

RESUMEN

Many empirical studies motivated by an interest in stable coexistence have quantified negative density dependence, negative frequency dependence, or negative plant-soil feedback, but the links between these empirical results and ecological theory are not straightforward. Here, we relate these analyses to theoretical conditions for stabilisation and stable coexistence in classical competition models. By stabilisation, we mean an excess of intraspecific competition relative to interspecific competition that inherently slows or even prevents competitive exclusion. We show that most, though not all, tests demonstrating negative density dependence, negative frequency dependence, and negative plant-soil feedback constitute sufficient conditions for stabilisation of two-species interactions if applied to data for per capita population growth rates of pairs of species, but none are necessary or sufficient conditions for stable coexistence of two species. Potential inferences are even more limited when communities involve more than two species, and when performance is measured at a single life stage or vital rate. We then discuss two approaches that enable stronger tests for stable coexistence-invasibility experiments and model parameterisation. The model parameterisation approach can be applied to typical density-dependence, frequency-dependence, and plant-soil feedback data sets, and generally enables better links with mechanisms and greater insights, as demonstrated by recent studies.


Asunto(s)
Plantas , Suelo , Ecología , Retroalimentación
6.
J Anim Ecol ; 88(5): 768-779, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30801697

RESUMEN

Changes in population dynamics due to interacting evolutionary and ecological processes are the direct result of responses in vital rates, that is stage-specific growth, survival and fecundity. Quantifying through which vital rates population fitness is affected, instead of focusing on population trends only, can give a more mechanistic understanding of eco-evolutionary dynamics. The aim of this study was to estimate the underlying demographic rates of aphid (Myzus persicae) populations. We analysed unpublished stage-structure population dynamics data of a field experiment with caged and uncaged populations in which rapid evolutionary dynamics were observed, as well as unpublished results from an individual life table experiment performed in a glasshouse. Using data on changes in population abundance and stage distributions over time, we estimated transition matrices with inverse modelling techniques, in a Bayesian framework. The model used to fit across all experimental treatments included density as well as clone-specific caging effects. We additionally used individual life table data to inform the model on survival, growth and reproduction. Results suggest that clones varied considerably in vital rates, and imply trade-offs between reproduction and survival. Responses to densities also varied between clones. Negative density dependence was found in growth and reproduction, and the presence of predators and competitors further decreased these two vital rates, while survival estimates increased. Under uncaged conditions, population growth rates of the evolving populations were increased compared to the expectation based on the pure clones. Our inverse modelling approach revealed how much vital rates contributed to the eco-evolutionary dynamics. The decomposition analysis showed that variation in population growth rates in the evolving populations was to a large extent shaped by plant size. Yet, it also revealed an impact of evolutionary changes in clonal composition. Finally, we discuss that inverse modelling is a complex problem, as multiple combinations of individual rates can result in the same dynamics. We discuss assumptions and limitations, as well as opportunities, of this approach.


Asunto(s)
Áfidos , Evolución Biológica , Animales , Teorema de Bayes , Ecología , Dinámica Poblacional
7.
Oecologia ; 191(3): 565-578, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31624961

RESUMEN

Plant species of semi-natural grasslands are threatened by several simultaneous global change drivers, most notably land-use and climate change. In this study, we explore spatiotemporal variation and changes in deterministic (λ) and stochastic population growth rates (λs), and the underlying vital rates of eight populations of Arnica montana at the species' north-western range margin in Norway. We assess to what extent variation in the demographic rates could be attributed to environmental correlates of the key global change drivers likely to operate at the range edge, including population size, surrogates of habitat quality, temperature and precipitation. We found no relationship between λ and population size or habitat quality, but λ declined in response to both increasing precipitation and increasing temperature. Life-table response experiments revealed that the temporal variability was driven by survival and clonality, whereas the spatial variation was driven by clonality. Our results suggest that A. montana has a threshold response to increasing precipitation, likely due to adaptations to local climatic conditions. Growth and flowering were both negatively affected by increasing temperature, but these effects had a low influence on the spatiotemporal variability in λ. In contrast, the stochastic growth rate was negatively influenced by climate change, indicating an increased extinction risk for marginal populations, possibly leading to range contraction of A. montana as climate change proceeds. Altogether, our study illustrates how the fates of peripheral populations, which are critically important in species range dynamics, may be affected by both deterministic and stochastic effects of multiple coinciding global change drivers.


Asunto(s)
Arnica , Cambio Climático , Montana , Noruega , Dinámica Poblacional , Temperatura
9.
Proc Natl Acad Sci U S A ; 113(1): 230-5, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26699477

RESUMEN

The identification of patterns in life-history strategies across the tree of life is essential to our prediction of population persistence, extinction, and diversification. Plants exhibit a wide range of patterns of longevity, growth, and reproduction, but the general determinants of this enormous variation in life history are poorly understood. We use demographic data from 418 plant species in the wild, from annual herbs to supercentennial trees, to examine how growth form, habitat, and phylogenetic relationships structure plant life histories and to develop a framework to predict population performance. We show that 55% of the variation in plant life-history strategies is adequately characterized using two independent axes: the fast-slow continuum, including fast-growing, short-lived plant species at one end and slow-growing, long-lived species at the other, and a reproductive strategy axis, with highly reproductive, iteroparous species at one extreme and poorly reproductive, semelparous plants with frequent shrinkage at the other. Our findings remain consistent across major habitats and are minimally affected by plant growth form and phylogenetic ancestry, suggesting that the relative independence of the fast-slow and reproduction strategy axes is general in the plant kingdom. Our findings have similarities with how life-history strategies are structured in mammals, birds, and reptiles. The position of plant species populations in the 2D space produced by both axes predicts their rate of recovery from disturbances and population growth rate. This life-history framework may complement trait-based frameworks on leaf and wood economics; together these frameworks may allow prediction of responses of plants to anthropogenic disturbances and changing environments.


Asunto(s)
Desarrollo de la Planta , Plantas/clasificación , Reproducción , Ecosistema , Ambiente , Filogenia , Hojas de la Planta/crecimiento & desarrollo , Dinámica Poblacional , Crecimiento Demográfico , Madera/crecimiento & desarrollo
10.
Am Nat ; 189(3): 297-314, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28221824

RESUMEN

Dioecy has a demographic disadvantage compared with hermaphroditism: only about half of reproductive adults produce seeds. Dioecious species must therefore have fitness advantages to compensate for this cost through increased survival, growth, and/or reproduction. We used a full life cycle approach to quantify the demographic costs and benefits associated with dioecy while controlling for demographic differences between dioecious and hermaphroditic species related to other functional traits. The advantage of this novel approach is that we can focus on the effect of breeding system across a diverse tree community. We built a composite integral projection model for hermaphroditic and dioecious tree populations from Barro Colorado Island, Panama, using long-term demographic and newly collected reproductive data. Integration of all costs and benefits showed that compensation was realized through increased seed production, resulting in no net costs of dioecy. Compensation was also facilitated by the low contribution of reproduction to population growth. Estimated positive effects of dioecy on tree growth and survival were small and insignificant for population growth rates. Our model revealed that, for long-lived organisms, the cost of having males is smaller than generally expected. Hence, little compensation is required for dioecious species to maintain population growth rates similar to those of hermaphroditic species.


Asunto(s)
Reproducción , Árboles/crecimiento & desarrollo , Colorado , Panamá , Clima Tropical
11.
PLoS Comput Biol ; 11(3): e1004140, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25811842

RESUMEN

Computation has become a critical component of research in biology. A risk has emerged that computational and programming challenges may limit research scope, depth, and quality. We review various solutions to common computational efficiency problems in ecological and evolutionary research. Our review pulls together material that is currently scattered across many sources and emphasizes those techniques that are especially effective for typical ecological and environmental problems. We demonstrate how straightforward it can be to write efficient code and implement techniques such as profiling or parallel computing. We supply a newly developed R package (aprof) that helps to identify computational bottlenecks in R code and determine whether optimization can be effective. Our review is complemented by a practical set of examples and detailed Supporting Information material (S1-S3 Texts) that demonstrate large improvements in computational speed (ranging from 10.5 times to 14,000 times faster). By improving computational efficiency, biologists can feasibly solve more complex tasks, ask more ambitious questions, and include more sophisticated analyses in their research.


Asunto(s)
Biología Computacional/métodos , Metodologías Computacionales , Ecología/métodos , Genética de Población/métodos , Análisis por Conglomerados , Humanos
12.
Oecologia ; 181(2): 435-48, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-26932468

RESUMEN

The population dynamics and distribution limits of plant species are predicted to change as the climate changes. However, it remains unclear to what extent climate variables affect population dynamics, which vital rates are most sensitive to climate change, and whether the same vital rates drive population dynamics in different populations. In this study, we used long-term demographic data from two populations of the terrestrial orchid Himantoglossum hircinum growing at the northern edge of their geographic range to quantify the influence of climate change on demographic vital rates. Integral projection models were constructed to study how climate conditions between 1991 and 2006 affected population dynamics and to assess how projected future climate change will affect the long-term viability of this species. Based on the parameterised vital rate functions and the observed climatic conditions, one of the studied populations had an average population growth rate above 1 (λ = 1.04), while the other was declining at ca. 3 % year(-1) (λ = 0.97). Variation in temperature and precipitation mainly affected population growth through their effect on survival and fecundity. Based on UK Climate Projection 2009 estimates of future climate conditions for three greenhouse gas emission scenarios, population growth rates are expected to increase in one of the studied populations. Overall, our results indicate that the observed changes in climatic conditions appeared to be beneficial to the long-term survival of the species in the UK and suggest that they may have been the driving force behind the current range expansion of H. hircinum in England.


Asunto(s)
Cambio Climático , Dinámica Poblacional , Demografía , Orchidaceae , Crecimiento Demográfico
13.
Ecol Appl ; 24(5): 1178-87, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25154105

RESUMEN

Herbivores may significantly reduce plant populations by reducing seed set; however, we know little of their impact on seed movement. We show for the first time that the receptacle-feeding weevil Rhinocyllus conicus not only reduces seed production by the invasive thistle Carduus nutans but also inhibits release and subsequent wind dispersal of seeds. These effects generate large, though different, impacts on spatial spread and local abundance in two populations with differing demography, located in the United States and New Zealand. Furthermore, the mechanism is context dependent, with the largest effects through increased terminal velocity in the United States but through reduced seed production in New Zealand. Our results show that the benefit of biocontrol programs may have been underestimated; screenings of potential biocontrol agents should examine effects on pest dispersal and spread, as well as on abundance.


Asunto(s)
Agentes de Control Biológico , Carduus , Herbivoria , Gorgojos , Animales , Demografía , Especies Introducidas , Nueva Zelanda , Semillas
14.
Ecology ; 94(8): 1859-70, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24015529

RESUMEN

Marine spatial population dynamics are often addressed with a focus on larval dispersal, without taking into account movement behavior of individuals in later life stages. Processes occurring during demersal life stages may also drive spatial population dynamics if habitat quality is perceived differently by animals belonging to different life stages. In this study, we used a dual approach to understand how stage-structured habitat use and dispersal ability of adults shape the population of a marine fish species. Our study area and focal species provided us with the unique opportunity to study a closed island population. A spatial simulation model was used to estimate dispersal distances along a coral reef that surrounds the island, while contributions of different nursery bays were determined based on otolith stable isotope signatures of adult reef fish. The model showed that adult dispersal away from reef areas near nursery bays is limited. The results further show that different bays contributed unequally to the adult population on the coral reef, with productivity of juveniles in bay nursery habitat determining the degree of mixing among local populations on the reef and with one highly productive area contributing most to the island's reef fish population. The contribution of the coral reef as a nursery habitat was minimal, even though it had a much larger surface area. These findings indicate that the geographic distribution of nursery areas and their productivity are important drivers for the spatial distribution patterns of adults on coral reefs. We suggest that limited dispersal of adults on reefs can lead to a source-sink structure in the adult stage, where reefs close to nurseries replenish more isolated reef areas. Understanding these spatial population dynamics of the demersal phase of marine animals is of major importance for the design and placement of marine reserves, as nursery areas contribute differently to maintain adult populations.


Asunto(s)
Perciformes/crecimiento & desarrollo , Perciformes/fisiología , Envejecimiento/fisiología , Animales , Arrecifes de Coral , Demografía , Modelos Biológicos , Membrana Otolítica
15.
Commun Biol ; 6(1): 330, 2023 03 27.
Artículo en Inglés | MEDLINE | ID: mdl-36973362

RESUMEN

Mutualistic interactions are by definition beneficial for each contributing partner. However, it is insufficiently understood how mutualistic interactions influence partners throughout their lives. Here, we used animal species-explicit, microhabitat-structured integral projection models to quantify the effect of seed dispersal by 20 animal species on the full life cycle of the tree Frangula alnus in Bialowieza Forest, Eastern Poland. Our analysis showed that animal seed dispersal increased population growth by 2.5%. The effectiveness of animals as seed dispersers was strongly related to the interaction frequency but not the quality of seed dispersal. Consequently, the projected population decline due to simulated species extinction was driven by the loss of common rather than rare mutualist species. Our results support the notion that frequently interacting mutualists contribute most to the persistence of the populations of their partners, underscoring the role of common species for ecosystem functioning and nature conservation.


Asunto(s)
Ecosistema , Árboles , Animales , Semillas , Frutas , Bosques
16.
J Mammal ; 104(6): 1191-1204, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38059006

RESUMEN

Animals with large energy requirements are forced to optimize their hunting strategy, which may result in differentiation of the diet between sexes and across seasons. Here, we examined spatiotemporal variation in the diet of both sexes of the Pond Bat Myotis dasycneme, a species known to have spatial segregation of sexes when the young are born and lactating. Fecal pellets were collected from live animals for a period of 15 years at various locations in the Netherlands. A total of 535 pellets were successfully analyzed by microscopy and an additional 160 pellets by DNA metabarcoding. Morphological and molecular analyses showed that the diet of pregnant and lactating pond bats differed significantly from the diet of females with no reproductive investment. Further analyses of the data showed that pregnant female pond bats are highly dependent on small prey and pupae, mainly nonbiting midges and mosquitoes (Diptera: Chironomidae and Culicidae). These insects can be found in large quantities in peatlands intersected with shallow waterways, the habitat type in which female pond bats were observed more often than males. Our results suggest that during pregnancy the spatial segregation of sexes coincides with sex-specific diets, which might reflect habitat selection based on energy requirements, in addition to lowered intraspecific competition.

17.
Proc Biol Sci ; 279(1739): 2831-40, 2012 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-22418255

RESUMEN

Understanding the selective forces that shape reproductive strategies is a central goal of evolutionary ecology. Selection on the timing of reproduction is well studied in semelparous organisms because the cost of reproduction (death) can be easily incorporated into demographic models. Iteroparous organisms also exhibit delayed reproduction and experience reproductive costs, although these are not necessarily lethal. How non-lethal costs shape iteroparous life histories remains unresolved. We analysed long-term demographic data for the iteroparous orchid Orchis purpurea from two habitat types (light and shade). In both the habitats, flowering plants had lower growth rates and this cost was greater for smaller plants. We detected an additional growth cost of fruit production in the light habitat. We incorporated these non-lethal costs into integral projection models to identify the flowering size that maximizes fitness. In both habitats, observed flowering sizes were well predicted by the models. We also estimated optimal parameters for size-dependent flowering effort, but found a strong mismatch with the observed flower production. Our study highlights the role of context-dependent non-lethal reproductive costs as selective forces in the evolution of iteroparous life histories, and provides a novel and broadly applicable approach to studying the evolutionary demography of iteroparous organisms.


Asunto(s)
Evolución Biológica , Flores/fisiología , Orchidaceae/fisiología , Demografía , Frutas , Modelos Biológicos , Reproducción/fisiología
18.
Ecology ; 103(4): e3615, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34921394

RESUMEN

Understanding which factors cause populations to decline begins with identifying which parts of the life cycle, and which vital rates, have changed over time. However, in a world where humans are altering the environment both rapidly and in different ways, the demographic causes of decline likely vary over time. Identifying temporal variation in demographic causes of decline is crucial to assure that conservation actions target current and not past threats. However, this has rarely been studied as it requires long time series. Here we investigate how the demography of a long-lived shorebird (the Eurasian Oystercatcher Haematopus ostralegus) has changed in the past four decades, resulting in a shift from stable dynamics to strong declines (-9% per year), and recently back to a modest decline. Since individuals of this species are likely to respond differently to environmental change, we captured individual heterogeneity through three state variables: age, breeding status, and lay date (using integral projection models). Timing of egg-laying explained significant levels of variation in reproduction, with a parabolic relationship of maximal productivity near the average lay date. Reproduction explained most variation in population growth rates, largely due to poor nest success and hatchling survival. However, the demographic causes of decline have also been in flux over the last three decades: hatchling survival was low in the 2000s but improved in the 2010s, while adult survival declined in the 2000s and remains low today. Overall, the joint action of several key demographic variables explain the decline of the oystercatcher, and improvements in a single vital rate cannot halt the decline. Conservations actions will thus need to address threats occurring at different stages of the oystercatcher's life cycle. The dynamic nature of the threat landscape is further supported by the finding that the average individual no longer has the highest performance in the population, and emphasizes how individual heterogeneity in vital rates can play an important role in modulating population growth rates. Our results indicate that understanding population decline in the current era requires disentangling demographic mechanisms, individual variability, and their changes over time.


Asunto(s)
Charadriiformes , Animales , Estadios del Ciclo de Vida , Dinámica Poblacional , Reproducción , Factores de Tiempo
19.
Trends Ecol Evol ; 37(10): 872-885, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35811172

RESUMEN

Insects are the most diverse group of animals on Earth, but their small size and high diversity have always made them challenging to study. Recent technological advances have the potential to revolutionise insect ecology and monitoring. We describe the state of the art of four technologies (computer vision, acoustic monitoring, radar, and molecular methods), and assess their advantages, current limitations, and future potential. We discuss how these technologies can adhere to modern standards of data curation and transparency, their implications for citizen science, and their potential for integration among different monitoring programmes and technologies. We argue that they provide unprecedented possibilities for insect ecology and monitoring, but it will be important to foster international standards via collaboration.


Asunto(s)
Ecología , Insectos , Animales , Ecología/métodos
20.
Zookeys ; 1123: 31-45, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762038

RESUMEN

We describe six datasets that contain GPS and accelerometer data of 202 Eurasian oystercatchers (Haematopusostralegus) spanning the period 2008-2021. Birds were equipped with GPS trackers in breeding and wintering areas in the Netherlands and Belgium. We used GPS trackers from the University of Amsterdam Bird Tracking System (UvA-BiTS) for several study purposes, including the study of space use during the breeding season, habitat use and foraging behaviour in the winter season, and impacts of human disturbance. To enable broader usage, all data have now been made open access. Combined, the datasets contain 6.0 million GPS positions, 164 million acceleration measurements and 7.0 million classified behaviour events (i.e., flying, walking, foraging, preening, and inactive). The datasets are deposited on the research repository Zenodo, but are also accessible on Movebank and as down-sampled occurrence datasets on the Global Biodiversity Information Facility (GBIF) and Ocean Biodiversity Information System (OBIS).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA