Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
FASEB J ; 34(9): 12805-12819, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32772419

RESUMEN

Increased endothelial permeability leads to excessive exudation of plasma proteins and leukocytes in the interstitium, which characterizes several vascular diseases including acute lung injury. The myosin light chain kinase long (MYLK-L) isoform is canonically known to regulate the endothelial permeability by phosphorylating myosin light chain (MLC-P). Compared to the short MYLK isoform, MYLK-L contains an additional stretch of ~919 amino acid at the N-terminus of unknown function. We show that thapsigargin and thrombin-induced SOCE was markedly reduced in Mylk-L-/- endothelial cells (EC) or MYLK-L-depleted human EC. These agonists also failed to increase endothelial permeability in MYLK-L-depleted EC and Mylk-L-/- lungs, thus demonstrating the novel role of MYLK-L-induced SOCE in increasing vascular permeability. MYLK-L augmented SOCE by increasing endoplasmic reticulum (ER)-plasma membrane (PM) junctions and STIM1 translocation to these junctions. Transduction of N-MYLK domain (amino acids 1-919 devoid of catalytic activity) into Mylk-L-/- EC rescued SOCE to the level seen in control EC in a STIM1-dependent manner. N-MYLK-induced SOCE augmented endothelial permeability without MLC-P via an actin-binding motif, DVRGLL. Liposomal-mediated delivery of N-MYLK mutant but not ∆DVRGLL-N-MYLK mutant in Mylk-L-/- mice rescued vascular permeability increase in response to endotoxin, indicating that targeting of DVRGLL motif within MYLK-L may limit SOCE-induced vascular hyperpermeability.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Permeabilidad Capilar , Membrana Celular/enzimología , Retículo Endoplásmico/enzimología , Quinasa de Cadena Ligera de Miosina/metabolismo , Lesión Pulmonar Aguda/metabolismo , Animales , Células Endoteliales de la Vena Umbilical Humana , Humanos , Isoenzimas/metabolismo , Pulmón/metabolismo , Pulmón/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Neoplasias/metabolismo , Molécula de Interacción Estromal 1/metabolismo
2.
Environ Res ; 188: 109636, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32599389

RESUMEN

With the impacts of climate disruption becoming more evident there has been an increase in the uptake of climate change adaptation "toolkits" to assist local governments build community resilience and adapt to the impacts of climate change. There is increasing attention and call for practitioners to adopt proactive and participatory approaches to help in the adaptive response planning process. One such toolkit is the International Council for Local Environmental Initiatives (ICLEI) Asian Cities Climate Change Resilience Network (ACCRN) Process (IAP). This is a simple but rigorous toolkit developed to help local governments in Asian cities build resilience to the impacts of climate change. This paper outlines the application of the toolkit to determine its versatility in the rural context and was trialled in the Himalayan rural enclave of Ramgad in the Indian state of Uttarakhand. Given the differences between urban and rural environments, the outcomes highlighted the need for further investigation and analysis into the process to ensure that the methodology truly reflects the nature of rural systems and their level of vulnerability and adaptive capacity. Overall, the toolkit proved to be a simple but versatile toolkit to assess the vulnerability and adaptive capacity of communities in rural Himalaya. Over 40 resilience intervention strategies were developed for the Ramgad enclave and these were prioritized according to their technical, political, social and economic feasibility.


Asunto(s)
Cambio Climático , Gobierno Local , Aclimatación , Ciudades , Humanos , Población Rural
3.
bioRxiv ; 2023 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-37790514

RESUMEN

IFNγ, a type II interferon secreted by immune cells, augments tissue responses to injury following pathogenic infections leading to lethal acute lung injury (ALI). Alveolar macrophages (AM) abundantly express Toll-like receptor-4 and represent the primary cell type of the innate immune system in the lungs. A fundamental question remains whether AM generation of IFNg leads to uncontrolled innate response and perpetuated lung injury. LPS induced a sustained increase in IFNg levels and unresolvable inflammatory lung injury in the mice lacking RGS2 but not in RGS2 null chimeric mice receiving WT bone marrow or receiving the RGS2 gene in AM. Thus, indicating RGS2 serves as a gatekeeper of IFNg levels in AM and thereby lung's innate immune response. RGS2 functioned by forming a complex with TLR4 shielding Gaq from inducing IFNg generation and AM inflammatory signaling. Thus, inhibition of Gaq blocked IFNg generation and subverted AM transcriptome from being inflammatory to reparative type in RGS2 null mice, resolving lung injury. Highlights: RGS2 levels are inversely correlated with IFNγ in ARDS patient's AM.RGS2 in alveolar macrophages regulate the inflammatory lung injury.During pathogenic insult RGS2 functioned by forming a complex with TLR4 shielding Gαq from inducing IFNγ generation and AM inflammatory signaling. eToc Blurb: Authors demonstrate an essential role of RGS2 in macrophages in airspace to promoting anti-inflammatory function of alveolar macrophages in lung injury. The authors provided new insight into the dynamic control of innate immune response by Gαq and RGS2 axis to prevent ALI.

4.
Cells ; 11(18)2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-36139387

RESUMEN

Cyclic GMP-AMP synthase (cGAS) is a predominant and ubiquitously expressed cytosolic onfirmedDNA sensor that activates innate immune responses by producing a second messenger, cyclic GMP-AMP (cGAMP), and the stimulator of interferon genes (STING). cGAS contains a highly disordered N-terminus, which can sense genomic/chromatin DNA, while the C terminal of cGAS binds dsDNA liberated from various sources, including mitochondria, pathogens, and dead cells. Furthermore, cGAS cellular localization dictates its response to foreign versus self-DNA. Recent evidence has also highlighted the importance of dsDNA-induced post-translational modifications of cGAS in modulating inflammatory responses. This review summarizes and analyzes cGAS activity regulation based on structure, sub-cellular localization, post-translational mechanisms, and Ca2+ signaling. We also discussed the role of cGAS activation in different diseases and clinical outcomes.


Asunto(s)
Proteínas de la Membrana , Nucleotidiltransferasas , Cromatina , ADN/metabolismo , Interferones/genética , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo
5.
Front Pharmacol ; 13: 874197, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204227

RESUMEN

Efficient phagocytosis of pathogens by the innate immune system during infectious injury is vital for restoring tissue integrity. Impaired phagocytosis, such as in the case of infection with Pseudomonas aeruginosa, a broad-spectrum antibiotic-resistant Gram-negative bacterium, can lead to a life threatening lung disorder, acute lung injury (ALI). Evidence indicates that loss of protease-activated receptor 2 (PAR2) impaired Pseudomonas aeruginosa clearance leading to non-resolvable ALI, but the mechanism remains unclear. Here, we focused on the alveolar macrophages (AMs), the predominant population of lung-resident macrophages involved in sensing bacteria, to understand their role in PAR2-mediated phagocytosis of Pseudomonas aeruginosa. We found that upon binding Pseudomonas aeruginosa, PAR2-expressing but not PAR2-null AMs had increased cAMP levels, which activated Rac1 through protein kinase A. Activated Rac1 increased actin-rich protrusions to augment the phagocytosis of Pseudomonas aeruginosa. Administration of liposomes containing constitutively active Rac1 into PAR2-null mice lungs rescued phagocytosis and enhanced the survival of PAR2-null mice from pneumonia. These studies showed that PAR2 drives the cAMP-Rac1 signaling cascade that activates Pseudomonas aeruginosa phagocytosis in AMs, thereby preventing death from bacterial pneumonia.

6.
J Cell Signal ; 2(1): 47-51, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33644778

RESUMEN

Acute respiratory distress syndrome (ARDS) is the major cause of mortality among hospitalized acute lung injury (ALI) patients. Lung macrophages play an important role in maintaining the tissue-fluid homeostasis following injury. We recently showed that circulating monocytes recruited into the alveolar space suppressed the stimulator of type 1 interferon genes (STING) signaling in alveolar macrophages through sphingosine-1-phosphate (S1P). We used CD11b-DTR mice to deplete CD11b+ monocytes following LPS or Pseudomonas aeruginosa infection. Depletion of CD11b+ monocytes leads to the persistent inflammatory injury, infiltration of neutrophils, activation of STING signaling and mortality following lung infection. We demonstrated that adoptively transferred SPHK2-CD11b+ monocytes into CD11b-DTR mice after pathogenic infection rescue lung inflammatory injury.

7.
Front Immunol ; 11: 2091, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072072

RESUMEN

Macrophages play a central role in dictating the tissue response to infection and orchestrating subsequent repair of the damage. In this context, macrophages residing in the lungs continuously sense and discriminate among a wide range of insults to initiate the immune responses important to host-defense. Inflammatory tissue injury also leads to activation of proteases, and thereby the coagulation pathway, to optimize injury and repair post-infection. However, long-lasting inflammatory triggers from macrophages can impair the lung's ability to recover from severe injury, leading to increased lung vascular permeability and neutrophilic injury, hallmarks of Acute Lung Injury (ALI). In this review, we discuss the roles of toll-like receptor 4 (TLR4) and protease activating receptor 2 (PAR2) expressed on the macrophage cell-surface in regulating lung vascular inflammatory signaling.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Vasos Sanguíneos/inmunología , Pulmón/inmunología , Macrófagos/inmunología , Receptor PAR-2/inmunología , Transducción de Señal/inmunología , Receptor Toll-Like 4/inmunología , Lesión Pulmonar Aguda/patología , Animales , Vasos Sanguíneos/lesiones , Vasos Sanguíneos/patología , Permeabilidad Capilar/inmunología , Humanos , Pulmón/irrigación sanguínea , Macrófagos/patología
8.
Cell Rep ; 30(12): 4096-4109.e5, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32209471

RESUMEN

Acute lung injury (ALI) is a lethal inflammatory lung disorder whose incidence is on the rise. Alveolar macrophages normally act to resolve inflammation, but when dysregulated they can provoke ALI. We demonstrate that monocyte-derived macrophages (CD11b+ macrophages) recruited into the airspace upregulate the anti-inflammatory function of alveolar macrophages by suppressing their stimulator of type 1 interferon gene (STING) signaling. Depletion of CD11b+ macrophages in mice (macrophagedep mice) after endotoxin or after Pseudomonas aeruginosa causes expansion of the inflammatory alveolar macrophage population, leading to neutrophil accumulation, irreversible loss of lung vascular barrier function, and lethality. We show that CD11b+ macrophages suppress alveolar macrophage-STING signaling via sphingosine kinase-2 (SPHK2) generation of sphingosine-1-phosphate (S1P). Thus, adoptive transfer of wild-type (WT) or STING-/-, but not SPHK2-/-, CD11b monocytes from murine bone marrow into injured macrophagedep mice rescue anti-inflammatory alveolar macrophages and reverse lung vascular injury. SPHK2-induced S1P generation in CD11b+ macrophages has the potential to educate alveolar macrophages to resolve ALI.


Asunto(s)
Antígeno CD11b/metabolismo , Inflamación/patología , Lisofosfolípidos/metabolismo , Macrófagos Alveolares/metabolismo , Proteínas de la Membrana/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Esfingosina/análogos & derivados , Traslado Adoptivo , Animales , Citocinas/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Pulmón/irrigación sanguínea , Pulmón/patología , Macrófagos Alveolares/microbiología , Ratones Endogámicos C57BL , Nucleótidos Cíclicos/metabolismo , Pseudomonas aeruginosa/fisiología , Transducción de Señal , Esfingosina/metabolismo , Células U937
9.
Cell Rep ; 27(3): 793-805.e4, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30995477

RESUMEN

Alveolar macrophages (AMs), upon sensing pathogens, trigger host defense by activating toll-like receptor 4 (TLR4), but the counterbalancing mechanisms that deactivate AM inflammatory signaling and prevent lethal edema, the hallmark of acute lung injury (ALI), remain unknown. Here, we demonstrate the essential role of AM protease-activating receptor 2 (PAR2) in rapidly suppressing inflammation to prevent long-lasting injury. We show that thrombin, released during TLR4-induced lung injury, directly activates PAR2 to generate cAMP, which abolishes Ca2+ entry through the TRPV4 channel. Deletion of PAR2 and thus the accompanying cAMP generation augments Ca2+ entry via TRPV4, causing sustained activation of the transcription factor NFAT to produce long-lasting TLR4-mediated inflammatory lung injury. Rescuing thrombin-sensitive PAR2 expression or blocking TRPV4 activity in PAR2-null AMs restores their capacity to resolve inflammation and reverse lung injury. Thus, activation of the thrombin-induced PAR2-cAMP cascade in AMs suppresses TLR4 inflammatory signaling to reinstate tissue integrity.


Asunto(s)
Señalización del Calcio , AMP Cíclico/metabolismo , Inflamación/prevención & control , Macrófagos Alveolares/metabolismo , Receptor PAR-2/metabolismo , Canales Catiónicos TRPV/metabolismo , Receptor Toll-Like 4/metabolismo , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Animales , Calcio/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Macrófagos Alveolares/citología , Macrófagos Alveolares/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Factores de Transcripción NFATC/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Receptor PAR-2/deficiencia , Receptor PAR-2/genética , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética , Trombina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA