RESUMEN
BackgroundKnowledge on the burden attributed to influenza viruses vs other respiratory viruses in children hospitalised with severe acute respiratory infections (SARI) in Belgium is limited.AimThis observational study aimed at describing the epidemiology and assessing risk factors for severe disease.MethodsWe retrospectively analysed data from routine national sentinel SARI surveillance in Belgium. Respiratory specimens collected during winter seasons 2011 to 2020 were tested by multiplex real-time quantitative PCR (RT-qPCR) for influenza and other respiratory viruses. Demographic data and risk factors were collected through questionnaires. Patients were followed-up for complications or death during hospital stay. Analysis focused on children younger than 15 years. Binomial logistic regression was used to identify risk factors for severe disease in relation to infection status.ResultsDuring the winter seasons 2011 to 2020, 2,944 specimens met the study case definition. Complications were more common in children with underlying risk factors, especially asthma (adjusted risk ratio (aRR): 1.87; 95%â¯confidence interval (CI): 1.46-2.30) and chronic respiratory disease (aRR: 1.88; 95%â¯CI: 1.44-2.32), regardless of infection status and age. Children infected with non-influenza respiratory viruses had a 32% higher risk of complications (aRR: 1.32; 95%â¯CI: 1.06-1.66) compared with children with influenza only.ConclusionMulti-virus testing in children with SARI allows a more accurate assessment of the risk of complications and attribution of burden to respiratory viruses beyond influenza. Children with asthma and respiratory disease should be prioritised for clinical care, regardless of their virological test result and age, and targeted for prevention campaigns.
Asunto(s)
Asma , Gripe Humana , Neumonía , Infecciones del Sistema Respiratorio , Virus , Niño , Humanos , Lactante , Bélgica/epidemiología , Niño Hospitalizado , Estudios Retrospectivos , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Gripe Humana/complicaciones , Neumonía/complicaciones , Asma/complicaciones , Estaciones del AñoRESUMEN
BackgroundSeasonal influenza-like illness (ILI) affects millions of people yearly. Severe acute respiratory infections (SARI), mainly influenza, are a leading cause of hospitalisation and mortality. Increasing evidence indicates that non-influenza respiratory viruses (NIRV) also contribute to the burden of SARI. In Belgium, SARI surveillance by a network of sentinel hospitals has been ongoing since 2011.AimWe report the results of using in-house multiplex qPCR for the detection of a flexible panel of viruses in respiratory ILI and SARI samples and the estimated incidence rates of SARI associated with each virus.MethodsWe defined ILI as an illness with onset of fever and cough or dyspnoea. SARI was defined as an illness requiring hospitalisation with onset of fever and cough or dyspnoea within the previous 10 days. Samples were collected in four winter seasons and tested by multiplex qPCR for influenza virus and NIRV. Using catchment population estimates, we calculated incidence rates of SARI associated with each virus.ResultsOne third of the SARI cases were positive for NIRV, reaching 49.4% among children younger than 15 years. In children younger than 5 years, incidence rates of NIRV-associated SARI were twice that of influenza (103.5 vs 57.6/100,000 person-months); co-infections with several NIRV, respiratory syncytial viruses, human metapneumoviruses and picornaviruses contributed most (33.1, 13.6, 15.8 and 18.2/100,000 person-months, respectively).ConclusionEarly testing for NIRV could be beneficial to clinical management of SARI patients, especially in children younger than 5 years, for whom the burden of NIRV-associated disease exceeds that of influenza.
Asunto(s)
Gripe Humana , Orthomyxoviridae , Infecciones del Sistema Respiratorio , Virus , Bélgica/epidemiología , Niño , Humanos , Lactante , Gripe Humana/diagnóstico , Gripe Humana/epidemiología , Salud Pública , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/epidemiología , Vigilancia de Guardia , Virus/genéticaRESUMEN
Background: To support the COVID-19 pandemic response, many countries, including Belgium, implemented baseline genomic surveillance (BGS) programs aiming to early detect and characterize new SARS-CoV-2 variants. In parallel, Belgium maintained a sentinel network of six hospitals that samples patients with severe acute respiratory infections (SARI) and integrated SARS-CoV-2 detection within a broader range of respiratory pathogens. We evaluate the ability of the SARI surveillance to monitor general trends and early signals of viral genetic evolution of SARS-CoV-2 and compare it with the BGS as a reference model. Methods: Nine-hundred twenty-five SARS-CoV-2 positive samples from patients fulfilling the Belgian SARI definition between January 2020 and December 2022 were sequenced using the ARTIC Network amplicon tiling approach on a MinION platform. Weekly variant of concern (VOC) proportions and types were compared to those that were circulating between 2021 and 2022, using 96,251 sequences of the BGS. Results: SARI surveillance allowed timely detection of the Omicron (BA.1, BA.2, BA.4, and BA.5) and Delta (B.1.617.2) VOCs, with no to 2 weeks delay according to the start of their epidemic growth in the Belgian population. First detection of VOCs B.1.351 and P.1 took longer, but these remained minor in Belgium. Omicron BA.3 was never detected in SARI surveillance. Timeliness could not be evaluated for B.1.1.7, being already major at the start of the study period. Conclusions: Genomic surveillance of SARS-CoV-2 using SARI sentinel surveillance has proven to accurately reflect VOCs detected in the population and provides a cost-effective solution for long-term genomic monitoring of circulating respiratory viruses.
Asunto(s)
COVID-19 , Neumonía , Humanos , SARS-CoV-2/genética , Pandemias , Vigilancia de Guardia , COVID-19/diagnóstico , COVID-19/epidemiología , Genómica , HospitalesRESUMEN
BACKGROUND: Seasonal human coronaviruses (hCoVs) broadly circulate in humans. Their epidemiology and effect on the spread of emerging coronaviruses has been neglected thus far. We aimed to elucidate the epidemiology and burden of disease of seasonal hCoVs OC43, NL63, and 229E in patients in primary care and hospitals in Belgium between 2015 and 2020. METHODS: We retrospectively analysed data from the national influenza surveillance networks in Belgium during the winter seasons of 2015-20. Respiratory specimens were collected through the severe acute respiratory infection (SARI) and the influenza-like illness networks from patients with acute respiratory illness with onset within the previous 10 days, with measured or reported fever of 38°C or greater, cough, or dyspnoea; and for patients admitted to hospital for at least one night. Potential risk factors were recorded and patients who were admitted to hospital were followed up for the occurrence of complications or death for the length of their hospital stay. All samples were analysed by multiplex quantitative RT-PCRs for respiratory viruses, including seasonal hCoVs OC43, NL63, and 229E. We estimated the prevalence and incidence of seasonal hCoV infection, with or without co-infection with other respiratory viruses. We evaluated the association between co-infections and potential risk factors with complications or death in patients admitted to hospital with seasonal hCoV infections by age group. Samples received from week 8, 2020, were tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). FINDINGS: 2573 primary care and 6494 hospital samples were included in the study. 161 (6·3%) of 2573 patients in primary care and 371 (5·7%) of 6494 patients admitted to hospital were infected with a seasonal hCoV. OC43 was the seasonal hCoV with the highest prevalence across age groups and highest incidence in children admitted to hospital who were younger than 5 years (incidence 9·0 [95% CI 7·2-11·2] per 100â000 person-months) and adults older than 65 years (2·6 [2·1-3·2] per 100â000 person-months). Among 262 patients admitted to hospital with seasonal hCoV infection and with complete information on potential risk factors, 66 (73·3%) of 90 patients who had complications or died also had at least one potential risk factor (p=0·0064). Complications in children younger than 5 years were associated with co-infection (24 [36·4%] of 66; p=0·017), and in teenagers and adults (≥15 years), more complications arose in patients with a single hCoV infection (49 [45·0%] of 109; p=0·0097). In early 2020, the Belgian SARI surveillance detected the first SARS-CoV-2-positive sample concomitantly with the first confirmed COVID-19 case with no travel history to China. INTERPRETATION: The main burden of severe seasonal hCoV infection lies with children younger than 5 years with co-infections and adults aged 65 years and older with pre-existing comorbidities. These age and patient groups should be targeted for enhanced observation when in medical care and in possible future vaccination strategies, and co-infections in children younger than 5 years should be considered during diagnosis and treatment. Our findings support the use of national influenza surveillance systems for seasonal hCoV monitoring and early detection, and monitoring of emerging coronaviruses such as SARS-CoV-2. FUNDING: Belgian Federal Public Service Health, Food Chain Safety, and Environment; Belgian National Insurance Health Care (Institut national d'assurance maladie-invalidité/Rijksinstituut voor ziekte-en invaliditeitsverzekering); and Regional Health Authorities (Flanders Agentschap zorg en gezondheid, Brussels Commission communautaire commune, Wallonia Agence pour une vie de qualité).