Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 119(29): e2202209119, 2022 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35858348

RESUMEN

Membranous nephropathy is an autoimmune kidney disease caused by autoantibodies targeting antigens present on glomerular podocytes, instigating a cascade leading to glomerular injury. The most prevalent circulating autoantibodies in membranous nephropathy are against phospholipase A2 receptor (PLA2R), a cell surface receptor. The dominant epitope in PLA2R is located within the cysteine-rich domain, yet high-resolution structure-based mapping is lacking. In this study, we define the key nonredundant amino acids in the dominant epitope of PLA2R involved in autoantibody binding. We further describe two essential regions within the dominant epitope and spacer requirements for a synthetic peptide of the epitope for drug discovery. In addition, using cryo-electron microscopy, we have determined the high-resolution structure of PLA2R to 3.4 Å resolution, which shows that the dominant epitope and key residues within the cysteine-rich domain are accessible at the cell surface. In addition, the structure of PLA2R not only suggests a different orientation of domains but also implicates a unique immunogenic signature in PLA2R responsible for inducing autoantibody formation and recognition.


Asunto(s)
Presentación de Antígeno , Autoanticuerpos , Glomerulonefritis Membranosa , Epítopos Inmunodominantes , Receptores de Fosfolipasa A2 , Autoanticuerpos/química , Sitios de Unión , Microscopía por Crioelectrón , Cisteína/química , Glomerulonefritis Membranosa/inmunología , Humanos , Epítopos Inmunodominantes/química , Epítopos Inmunodominantes/inmunología , Dominios Proteicos , Receptores de Fosfolipasa A2/química , Receptores de Fosfolipasa A2/inmunología
2.
Nucleic Acids Res ; 50(8): 4732-4754, 2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35420136

RESUMEN

SUMOylation is critical for numerous cellular signalling pathways, including the maintenance of genome integrity via the repair of DNA double-strand breaks (DSBs). If misrepaired, DSBs can lead to cancer, neurodegeneration, immunodeficiency and premature ageing. Using systematic human proteome microarray screening combined with widely applicable carbene footprinting, genetic code expansion and high-resolution structural profiling, we define two non-conventional and topology-selective SUMO2-binding regions on XRCC4, a DNA repair protein important for DSB repair by non-homologous end-joining (NHEJ). Mechanistically, the interaction of SUMO2 and XRCC4 is incompatible with XRCC4 binding to three other proteins important for NHEJ-mediated DSB repair. These findings are consistent with SUMO2 forming a redundant NHEJ layer with the potential to regulate different NHEJ complexes at distinct levels including, but not limited to, XRCC4 interactions with XLF, LIG4 and IFFO1. Regulation of NHEJ is not only relevant for carcinogenesis, but also for the design of precision anti-cancer medicines and the optimisation of CRISPR/Cas9-based gene editing. In addition to providing molecular insights into NHEJ, this work uncovers a conserved SUMO-binding module and provides a rich resource on direct SUMO binders exploitable towards uncovering SUMOylation pathways in a wide array of cellular processes.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Reparación del ADN , Roturas del ADN de Doble Cadena , Enzimas Reparadoras del ADN/metabolismo , Humanos , Análisis por Micromatrices , Unión Proteica , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina , Sumoilación
3.
Biophys J ; 121(12): 2474-2484, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35490299

RESUMEN

Isothermal titration calorimetry (ITC) has long been established as an excellent means to determine the thermodynamic parameters of biomolecular interactions. More recently, efforts have focused on exploiting the power/time trace (the "thermogram") resulting from ITC experiments to glean kinetic association and dissociation rates for these interactions. The success of such analyses rests on the ability of algorithms to simulate with high accuracy the output of the calorimeter. Thus, several critical factors must be taken into account: the injection protocol, the kinetics of the interaction, accurate discovery of the instrumental response to heat signals, and the addition of unrelated signals. All of these aspects of extracting kinetic constants from thermograms have been considered and addressed in the current work. To validate the resultant methods, we performed several ITC experiments, titrating small-molecule inhibitors into solutions of bovine carbonic anhydrase II or titrating lysozyme into solutions of anti-lysozyme nanobodies. We found that our methods could arrive at kinetic constants that were close to the known values for these interactions taken from other methods. Finally, the effort to improve ITC kinetic characterizations uncovered a set of best practices for both the calorimetric experiment and the subsequent analyses (termed "kinetically optimized ITC" or "KO-ITC") that is detailed in this work.


Asunto(s)
Anhidrasa Carbónica II , Animales , Calorimetría/métodos , Bovinos , Estudios de Factibilidad , Cinética , Termodinámica
4.
Int J Mol Sci ; 23(8)2022 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35456902

RESUMEN

As essential components of our connective tissues, elastic fibres give tissues such as major blood vessels, skin and the lungs their elasticity. Their formation is complex and co-ordinately regulated by multiple factors. In this review, we describe key players in elastogenesis: fibrillin-1, tropoelastin, latent TGFß binding protein-4, and fibulin-4 and -5. We summarise their roles in elastogenesis, discuss the effect of their mutations on relevant diseases, and describe their interactions involved in forming the elastic fibre network. Moreover, we look into their roles in wound repair for a better understanding of their potential application in tissue regeneration.


Asunto(s)
Tejido Elástico , Proteínas de la Matriz Extracelular , Tejido Conectivo/metabolismo , Tejido Elástico/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de Unión a TGF-beta Latente/metabolismo , Tropoelastina/genética , Tropoelastina/metabolismo , Cicatrización de Heridas/genética
5.
J Biol Chem ; 295(16): 5278-5291, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32144206

RESUMEN

Inter-α-inhibitor is a proteoglycan essential for mammalian reproduction and also plays a less well-characterized role in inflammation. It comprises two homologous "heavy chains" (HC1 and HC2) covalently attached to chondroitin sulfate on the bikunin core protein. Before ovulation, HCs are transferred onto the polysaccharide hyaluronan (HA) to form covalent HC·HA complexes, thereby stabilizing an extracellular matrix around the oocyte required for fertilization. Additionally, such complexes form during inflammatory processes and mediate leukocyte adhesion in the synovial fluids of arthritis patients and protect against sepsis. Here using X-ray crystallography, we show that human HC1 has a structure similar to integrin ß-chains, with a von Willebrand factor A domain containing a functional metal ion-dependent adhesion site (MIDAS) and an associated hybrid domain. A comparison of the WT protein and a variant with an impaired MIDAS (but otherwise structurally identical) by small-angle X-ray scattering and analytical ultracentrifugation revealed that HC1 self-associates in a cation-dependent manner, providing a mechanism for HC·HA cross-linking and matrix stabilization. Surprisingly, unlike integrins, HC1 interacted with RGD-containing ligands, such as fibronectin, vitronectin, and the latency-associated peptides of transforming growth factor ß, in a MIDAS/cation-independent manner. However, HC1 utilizes its MIDAS motif to bind to and inhibit the cleavage of complement C3, and small-angle X-ray scattering-based modeling indicates that this occurs through the inhibition of the alternative pathway C3 convertase. These findings provide detailed structural and functional insights into HC1 as a regulator of innate immunity and further elucidate the role of HC·HA complexes in inflammation and ovulation.


Asunto(s)
alfa-Globulinas/química , Matriz Extracelular/metabolismo , Inmunidad Innata , Simulación de Dinámica Molecular , Ovulación , Humanos , Cadenas beta de Integrinas/química , Dominios Proteicos , Factor de von Willebrand/química
6.
Eur Biophys J ; 50(3-4): 333-343, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33839878

RESUMEN

There is a significant demand in the molecular biophysics community for robust standard samples. They are required by researchers, instrument developers and pharmaceutical companies for instrumental quality control, methodological development and in the design and validation of devices, diagnostics and instrumentation. To-date there has been no clear consensus on the need and type of standards that should be available and different research groups and instrument manufacturers use different standard systems which significantly hinders comparative analysis. One of the major objectives of the Association of Resources for Biophysical Research in Europe (ARBRE) is to establish a common set of standard samples that can be used throughout the biophysics community and instrument developers. A survey was circulated among ARBRE members to ascertain the requirements of laboratories when using standard systems and the results are documented in this article. In summary, the major requirements are protein samples which are cheap, relatively small, stable and have different binding strengths. We have developed a panel of sdAb's or 'nanobodies' against hen-egg white lysozyme with different binding strengths and suitable stability characteristics. Here we show the results of the survey, the selection procedure, validation and final selection of a panel of nanobody interaction standards.


Asunto(s)
Anticuerpos de Dominio Único/análisis , Animales , Biofisica , Pollos , Femenino , Muramidasa
7.
Eur Biophys J ; 50(3-4): 411-427, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33881594

RESUMEN

Microscale thermophoresis (MST), and the closely related Temperature Related Intensity Change (TRIC), are synonyms for a recently developed measurement technique in the field of biophysics to quantify biomolecular interactions, using the (capillary-based) NanoTemper Monolith and (multiwell plate-based) Dianthus instruments. Although this technique has been extensively used within the scientific community due to its low sample consumption, ease of use, and ubiquitous applicability, MST/TRIC has not enjoyed the unambiguous acceptance from biophysicists afforded to other biophysical techniques like isothermal titration calorimetry (ITC) or surface plasmon resonance (SPR). This might be attributed to several facts, e.g., that various (not fully understood) effects are contributing to the signal, that the technique is licensed to only a single instrument developer, NanoTemper Technology, and that its reliability and reproducibility have never been tested independently and systematically. Thus, a working group of ARBRE-MOBIEU has set up a benchmark study on MST/TRIC to assess this technique as a method to characterize biomolecular interactions. Here we present the results of this study involving 32 scientific groups within Europe and two groups from the US, carrying out experiments on 40 Monolith instruments, employing a standard operation procedure and centrally prepared samples. A protein-small molecule interaction, a newly developed protein-protein interaction system and a pure dye were used as test systems. We characterized the instrument properties and evaluated instrument performance, reproducibility, the effect of different analysis tools, the influence of the experimenter during data analysis, and thus the overall reliability of this method.


Asunto(s)
Benchmarking , Laboratorios , Calorimetría , Reproducibilidad de los Resultados , Temperatura
8.
J Biol Chem ; 294(45): 17105-17116, 2019 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-31570524

RESUMEN

Mucin 5B (MUC5B) has an essential role in mucociliary clearance that protects the pulmonary airways. Accordingly, knowledge of MUC5B structure and its interactions with itself and other proteins is critical to better understand airway mucus biology and improve the management of lung diseases such as asthma, cystic fibrosis, and chronic obstructive pulmonary disease (COPD). The role of an N-terminal multimerization domain in the supramolecular organization of MUC5B has been previously described, but less is known about its C-terminal dimerization domain. Here, using cryogenic electron microscopy (cryo-EM) and small-angle X-ray scattering (SAXS) analyses of recombinant disulfide-linked dimeric MUC5B dimerization domain we identified an asymmetric, elongated twisted structure, with a double globular base. We found that the dimerization domain is more resistant to disruption than the multimerization domain suggesting the twisted structure of the dimerization domain confers additional stability to MUC5B polymers. Size-exclusion chromatography-multiangle light scattering (SEC-MALS), SPR-based biophysical analyses and microscale thermophoresis of the dimerization domain disclosed no further assembly, but did reveal reversible, calcium-dependent interactions between the dimerization and multimerization domains that were most active at acidic pH, suggesting that these domains have a role in MUC5B intragranular organization. In summary, our results suggest a role for the C-terminal dimerization domain of MUC5B in compaction of mucin chains during granular packaging via interactions with the N-terminal multimerization domain. Our findings further suggest that the less stable multimerization domain provides a potential target for mucin depolymerization to remove mucus plugs in COPD and other lung pathologies.


Asunto(s)
Espacio Intracelular/metabolismo , Mucina 5B/química , Mucina 5B/metabolismo , Multimerización de Proteína , Células HEK293 , Humanos , Concentración de Iones de Hidrógeno , Modelos Moleculares , Dominios Proteicos , Estabilidad Proteica , Estructura Cuaternaria de Proteína
9.
FASEB J ; 33(4): 5468-5481, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30676771

RESUMEN

Lysyl oxidases (LOXs) play a central role in extracellular matrix remodeling during development and tumor growth and fibrosis through cross-linking of collagens and elastin. We have limited knowledge of the structure and substrate specificity of these secreted enzymes. LOXs share a conserved C-terminal catalytic domain but differ in their N-terminal region, which is composed of 4 repeats of scavenger receptor cysteine-rich (SRCR) domains in LOX-like (LOXL) 2. We investigated by X-ray scattering and electron microscopy the low-resolution structure of the full-length enzyme and the structure of a shorter form lacking the catalytic domain. Our data demonstrate that LOXL2 has a rod-like structure with a stalk composed of the SRCR domains and the catalytic domain at its tip. We detected direct interaction between LOXL2 and tropoelastin (TE) and also LOXL2-mediated deamination of TE. Using proteomics, we identified several allysines together with cross-linked TE peptides. The elastin-like material generated was resistant to trypsin proteolysis and displayed mechanical properties similar to mature elastin. Finally, we detected the codistribution of LOXL2 and elastin in the vascular wall. Altogether, these data suggest that LOXL2 could participate in elastogenesis in vivo and could be used as a means of cross-linking TE in vitro for biomimetic and cell-compatible tissue engineering purposes.-Schmelzer, C. E. H., Heinz, A., Troilo, H., Lockhart-Cairns, M.-P., Jowitt, T. A., Marchand, M. F., Bidault, L., Bignon, M., Hedtke, T., Barret, A., McConnell, J. C., Sherratt, M. J., Germain, S., Hulmes, D. J. S., Baldock, C., Muller, L. Lysyl oxidase-like 2 (LOXL2)-mediated cross-linking of tropoelastin.


Asunto(s)
Aminoácido Oxidorreductasas/metabolismo , Tropoelastina/metabolismo , Animales , Células CHO , Dominio Catalítico/fisiología , Línea Celular , Colágeno/metabolismo , Cricetulus , Elastina/metabolismo , Matriz Extracelular/metabolismo , Humanos , Proteolisis , Especificidad por Sustrato/fisiología
10.
Chembiochem ; 20(22): 2841-2849, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31165578

RESUMEN

NAD(P)H quinone oxidoreductase-1 (NQO1) is a homodimeric protein that acts as a detoxifying enzyme or as a chaperone protein. Dicourmarol interacts with NQO1 at the NAD(P)H binding site and can both inhibit enzyme activity and modulate the interaction of NQO1 with other proteins. We show that the binding of dicoumarol and related compounds to NQO1 generates negative cooperativity between the monomers. This does not occur in the presence of the reducing cofactor, NAD(P)H, alone. Alteration of Gly150 (but not Gly149 or Gly174) abolished the dicoumarol-induced negative cooperativity. Analysis of the dynamics of NQO1 with the Gaussian network model indicates a high degree of collective motion by monomers and domains within NQO1. Ligand binding is predicted to alter NQO1 dynamics both proximal to the ligand binding site and remotely, close to the second binding site. Thus, drug-induced modulation of protein motion might contribute to the biological effects of putative inhibitors of NQO1.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Dicumarol/farmacología , Inhibidores Enzimáticos/farmacología , NAD(P)H Deshidrogenasa (Quinona)/antagonistas & inhibidores , Sustitución de Aminoácidos , Dominio Catalítico , Línea Celular Tumoral , Dicumarol/metabolismo , Inhibidores Enzimáticos/metabolismo , Humanos , Ligandos , NAD(P)H Deshidrogenasa (Quinona)/genética , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Unión Proteica , Proteína p53 Supresora de Tumor/metabolismo
11.
Nucleic Acids Res ; 45(13): 8064-8078, 2017 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-28505309

RESUMEN

The transcription factor ICP4 from herpes simplex virus has a central role in regulating the gene expression cascade which controls viral infection. Here we present the crystal structure of the functionally essential ICP4 DNA binding domain in complex with a segment from its own promoter, revealing a novel homo-dimeric fold. We also studied the complex in solution by small angle X-Ray scattering, nuclear magnetic resonance and surface-plasmon resonance which indicated that, in addition to the globular domain, a flanking intrinsically disordered region also recognizes DNA. Together the data provides a rationale for the bi-partite nature of the ICP4 DNA recognition consensus sequence as the globular and disordered regions bind synergistically to adjacent DNA motifs. Therefore in common with its eukaryotic host, the viral transcription factor ICP4 utilizes disordered regions to enhance the affinity and tune the specificity of DNA interactions in tandem with a globular domain.


Asunto(s)
Herpesvirus Humano 1/metabolismo , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/metabolismo , Secuencia de Aminoácidos , Sitios de Unión/genética , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/patogenicidad , Humanos , Proteínas Inmediatas-Precoces/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Modelos Biológicos , Modelos Moleculares , Resonancia Magnética Nuclear Biomolecular , Dominios Proteicos , Pliegue de Proteína , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Resonancia por Plasmón de Superficie , Difracción de Rayos X
12.
Nat Chem Biol ; 12(12): 1097-1104, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27775716

RESUMEN

Proteins of the bromodomain and extraterminal (BET) family, in particular bromodomain-containing protein 4 (BRD4), are of great interest as biological targets. BET proteins contain two separate bromodomains, and existing inhibitors bind to them monovalently. Here we describe the discovery and characterization of probe compound biBET, capable of engaging both bromodomains simultaneously in a bivalent, in cis binding mode. The evidence provided here was obtained in a variety of biophysical and cellular experiments. The bivalent binding results in very high cellular potency for BRD4 binding and pharmacological responses such as disruption of BRD4-mediator complex subunit 1 foci with an EC50 of 100 pM. These compounds will be of considerable utility as BET/BRD4 chemical probes. This work illustrates a novel concept in ligand design-simultaneous targeting of two separate domains with a drug-like small molecule-providing precedent for a potentially more effective paradigm for developing ligands for other multi-domain proteins.


Asunto(s)
Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/química , Dominios Proteicos/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/química , Apoptosis/efectos de los fármacos , Proteínas de Ciclo Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Ligandos , Modelos Moleculares , Estructura Molecular , Proteínas Nucleares/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Especificidad por Sustrato , Factores de Transcripción/metabolismo
13.
Nucleic Acids Res ; 44(7): 3031-44, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-26657637

RESUMEN

The mechanical properties of the cell nucleus change to allow cells to migrate, but how chromatin modifications contribute to nuclear deformability has not been defined. Here, we demonstrate that a major factor in this process involves epigenetic changes that underpin nuclear structure. We investigated the link between cell adhesion and epigenetic changes in T-cells, and demonstrate that T-cell adhesion to VCAM1 via α4ß1 integrin drives histone H3 methylation (H3K9me2/3) through the methyltransferase G9a. In this process, active G9a is recruited to the nuclear envelope and interacts with lamin B1 during T-cell adhesion through α4ß1 integrin. G9a activity not only reorganises the chromatin structure in T-cells, but also affects the stiffness and viscoelastic properties of the nucleus. Moreover, we further demonstrated that these epigenetic changes were linked to lymphocyte movement, as depletion or inhibition of G9a blocks T-cell migration in both 2D and 3D environments. Thus, our results identify a novel mechanism in T-cells by which α4ß1 integrin signaling drives specific chromatin modifications, which alter the physical properties of the nucleus and thereby enable T-cell migration.


Asunto(s)
Movimiento Celular , Núcleo Celular/fisiología , Epigénesis Genética , Antígenos de Histocompatibilidad/metabolismo , N-Metiltransferasa de Histona-Lisina/metabolismo , Integrina alfa4beta1/metabolismo , Linfocitos/inmunología , Animales , Adhesión Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/química , Células HEK293 , Histonas/metabolismo , Humanos , Células Jurkat , Metilación , Ratones Endogámicos C57BL , Molécula 1 de Adhesión Celular Vascular/metabolismo
14.
Proc Natl Acad Sci U S A ; 112(17): 5395-400, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-25855637

RESUMEN

Desmosomes and adherens junctions are intercellular adhesive structures essential for the development and integrity of vertebrate tissue, including the epidermis and heart. Their cell adhesion molecules are cadherins: type 1 cadherins in adherens junctions and desmosomal cadherins in desmosomes. A fundamental difference is that desmosomes have a highly ordered structure in their extracellular region and exhibit calcium-independent hyperadhesion, whereas adherens junctions appear to lack such ordered arrays, and their adhesion is always calcium-dependent. We present here the structure of the entire ectodomain of desmosomal cadherin desmoglein 2 (Dsg2), using a combination of small-angle X-ray scattering, electron microscopy, and solution-based biophysical techniques. This structure reveals that the ectodomain of Dsg2 is flexible even in the calcium-bound state and, on average, is shorter than the type 1 cadherin crystal structures. The Dsg2 structure has an excellent fit with the electron tomography reconstructions of human desmosomes. This fit suggests an arrangement in which desmosomal cadherins form trans interactions but are too far apart to interact in cis, in agreement with previously reported observations. Cadherin flexibility may be key to explaining the plasticity of desmosomes that maintain tissue integrity in their hyperadhesive form, but can adopt a weaker, calcium-dependent adhesion during wound healing and early development.


Asunto(s)
Uniones Adherentes/química , Desmogleína 2/química , Desmosomas/química , Uniones Adherentes/genética , Uniones Adherentes/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Cristalografía por Rayos X , Desmogleína 2/genética , Desmogleína 2/metabolismo , Desmosomas/genética , Desmosomas/metabolismo , Humanos , Estructura Terciaria de Proteína
15.
J Biol Chem ; 291(40): 20993-21007, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27484800

RESUMEN

We previously demonstrated that Arg-Gly-Asp (RGD)-containing ligand-mimetic inhibitors of integrins are unable to dissociate pre-formed integrin-fibronectin complexes (IFCs). These observations suggested that amino acid residues involved in integrin-fibronectin binding become obscured in the ligand-occupied state. Because the epitopes of some function-blocking anti-integrin monoclonal antibodies (mAbs) lie near the ligand-binding pocket, it follows that the epitopes of these mAbs may become shielded in the ligand-occupied state. Here, we tested whether function-blocking mAbs directed against α5ß1 can interact with the integrin after it forms a complex with an RGD-containing fragment of fibronectin. We showed that the anti-α5 subunit mAbs JBS5, SNAKA52, 16, and P1D6 failed to disrupt IFCs and hence appeared unable to bind to the ligand-occupied state. In contrast, the allosteric anti-ß1 subunit mAbs 13, 4B4, and AIIB2 could dissociate IFCs and therefore were able to interact with the ligand-bound state. However, another class of function-blocking anti-ß1 mAbs, exemplified by Lia1/2, could not disrupt IFCs. This second class of mAbs was also distinguished from 13, 4B4, and AIIB2 by their ability to induce homotypic cell aggregation. Although the epitope of Lia1/2 was closely overlapping with those of 13, 4B4, and AIIB2, it appeared to lie closer to the ligand-binding pocket. A new model of the α5ß1-fibronectin complex supports our hypothesis that the epitopes of mAbs that fail to bind to the ligand-occupied state lie within, or very close to, the integrin-fibronectin interface. Importantly, our findings imply that the efficacy of some therapeutic anti-integrin mAbs could be limited by epitope masking.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/química , Epítopos/química , Fibronectinas/química , Integrina alfa5beta1/química , Modelos Moleculares , Oligopéptidos/química , Regulación Alostérica/inmunología , Anticuerpos Monoclonales de Origen Murino/inmunología , Epítopos/genética , Epítopos/inmunología , Fibronectinas/genética , Fibronectinas/inmunología , Humanos , Integrina alfa5beta1/genética , Integrina alfa5beta1/inmunología , Células Jurkat , Oligopéptidos/genética , Oligopéptidos/inmunología
16.
Proc Natl Acad Sci U S A ; 111(36): 13063-8, 2014 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-25157165

RESUMEN

Bone morphogenetic proteins (BMPs) orchestrate key cellular events, such as proliferation and differentiation, in development and homeostasis. Extracellular antagonists, such as chordin, are essential regulators of BMP signaling. Chordin binds to BMPs blocking interaction with receptors, and cleavage by tolloid proteinases is thought to relieve this inhibition. A model has been previously proposed where chordin adopts a horseshoe-like arrangement enabling BMP binding cooperatively by terminal domains (1). Here, we present the nanoscale structure of human chordin using electron microscopy, small angle X-ray scattering, and solution-based biophysical techniques, which together show that chordin indeed has a compact horseshoe-shaped structure. Chordin variants were used to map domain locations within the chordin molecule. The terminal BMP-binding domains protrude as prongs from the main body of the chordin structure, where they are well positioned to interact with the growth factor. The spacing provided by the chordin domains supports the principle of a cooperative BMP-binding arrangement that the original model implied in which growth factors bind to both an N- and C-terminal von Willebrand factor C domain of chordin. Using binding and bioactivity assays, we compared full-length chordin with two truncated chordin variants, such as those produced by partial tolloid cleavage. Cleavage of either terminal domain has little effect on the affinity of chordin for BMP-4 and BMP-7 but C-terminal cleavage increases the efficacy of chordin as a BMP-4 inhibitor. Together these data suggest that partial tolloid cleavage is insufficient to ablate BMP inhibition and the C-terminal chordin domains play an important role in BMP regulation.


Asunto(s)
Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Glicoproteínas/química , Péptidos y Proteínas de Señalización Intercelular/química , Nanopartículas/química , Animales , Proteínas Morfogenéticas Óseas/química , Glicoproteínas/ultraestructura , Células HEK293 , Humanos , Hidrodinámica , Imagenología Tridimensional , Ratones , Modelos Moleculares , Proteínas Mutantes/química , Nanopartículas/ultraestructura , Unión Proteica , Estructura Terciaria de Proteína , Dispersión del Ángulo Pequeño , Soluciones , Resonancia por Plasmón de Superficie , Difracción de Rayos X
17.
Biochemistry ; 55(2): 262-76, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26685054

RESUMEN

Tumor necrosis factor-stimulated gene-6 (TSG-6) is a hyaluronan (HA)-binding protein that is essential for stabilizing and remodeling the extracellular matrix (ECM) during ovulation and inflammatory disease processes such as arthritis. The Link module, one of the domains of TSG-6, is responsible for binding hyaluronan and other glycosaminoglycans found in the ECM. In this study, we used a well-defined chondroitin sulfate (CS) hexasaccharide (ΔC444S) to determine the structure of the Link module, in solution, in its chondroitin sulfate-bound state. A variety of nuclear magnetic resonance techniques were employed, including chemical shift perturbation, residual dipolar couplings (RDCs), nuclear Overhauser effects, spin relaxation measurements, and paramagnetic relaxation enhancements from a spin-labeled analogue of ΔC444S. The binding site for ΔC444S on the Link module overlapped with that of HA. Surprisingly, ΔC444S binding induced dimerization of the Link module (as confirmed by analytical ultracentrifugation), and a second weak binding site that partially overlapped with a previously identified heparin site was detected. A dimer model was generated using chemical shift perturbations and RDCs as restraints in the docking program HADDOCK. We postulate that the molecular cross-linking enhanced by the multiple binding modes of the Link module might be critical for remodeling the ECM during inflammation/ovulation and might contribute to other functions of TSG-6.


Asunto(s)
Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/metabolismo , Glicosaminoglicanos/metabolismo , Espectroscopía de Resonancia Magnética , Sulfatos de Condroitina/metabolismo , Humanos , Receptores de Hialuranos , Ácido Hialurónico/metabolismo , Unión Proteica , Estructura Terciaria de Proteína
18.
J Biol Chem ; 290(14): 9273-83, 2015 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-25713077

RESUMEN

The ribbon-helix-helix (RHH) superfamily of DNA-binding proteins is dispersed widely in procaryotes. The dimeric RHH fold is generated by interlocking of two monomers into a 2-fold symmetrical structure that comprises four α-helices enwrapping a pair of antiparallel ß-strands (ribbon). Residues in the ribbon region are the principal determinants of DNA binding, whereas the RHH hydrophobic core is assembled from amino acids in both the α-helices and ribbon element. The ParG protein encoded by multiresistance plasmid TP228 is a RHH protein that functions dually as a centromere binding factor during segrosome assembly and as a transcriptional repressor. Here we identify residues in the α-helices of ParG that are critical for DNA segregation and in organization of the protein hydrophobic core. A key hydrophobic aromatic amino acid at one position was functionally substitutable by other aromatic residues, but not by non-aromatic hydrophobic amino acids. Nevertheless, intramolecular suppression of the latter by complementary change of a residue that approaches nearby from the partner monomer fully restored activity in vivo and in vitro. The interactions involved in assembling the ParG core may be highly malleable and suggest that RHH proteins are tractable platforms for the rational design of diverse DNA binding factors useful for synthetic biology and other purposes.


Asunto(s)
Centrómero , Proteínas de Escherichia coli/metabolismo , Proteínas Represoras/metabolismo , Secuencia de Aminoácidos , Dimerización , Proteínas de Escherichia coli/química , Interacciones Hidrofóbicas e Hidrofílicas , Datos de Secuencia Molecular , Proteínas Represoras/química
20.
J Biol Chem ; 290(48): 28708-23, 2015 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-26468290

RESUMEN

The matrix polysaccharide hyaluronan (HA) has a critical role in the expansion of the cumulus cell-oocyte complex (COC), a process that is necessary for ovulation and fertilization in most mammals. Hyaluronan is organized into a cross-linked network by the cooperative action of three proteins, inter-α-inhibitor (IαI), pentraxin-3, and TNF-stimulated gene-6 (TSG-6), driving the expansion of the COC and providing the cumulus matrix with its required viscoelastic properties. Although it is known that matrix stabilization involves the TSG-6-mediated transfer of IαI heavy chains (HCs) onto hyaluronan (to form covalent HC·HA complexes that are cross-linked by pentraxin-3) and that this occurs via the formation of covalent HC·TSG-6 intermediates, the underlying molecular mechanisms are not well understood. Here, we have determined the tertiary structure of the CUB module from human TSG-6, identifying a calcium ion-binding site and chelating glutamic acid residue that mediate the formation of HC·TSG-6. This occurs via an initial metal ion-dependent, non-covalent, interaction between TSG-6 and HCs that also requires the presence of an HC-associated magnesium ion. In addition, we have found that the well characterized hyaluronan-binding site in the TSG-6 Link module is not used for recognition during transfer of HCs onto HA. Analysis of TSG-6 mutants (with impaired transferase and/or hyaluronan-binding functions) revealed that although the TSG-6-mediated formation of HC·HA complexes is essential for the expansion of mouse COCs in vitro, the hyaluronan-binding function of TSG-6 does not play a major role in the stabilization of the murine cumulus matrix.


Asunto(s)
Moléculas de Adhesión Celular , Células del Cúmulo/metabolismo , Matriz Extracelular , Ácido Hialurónico , Oocitos/metabolismo , Animales , Moléculas de Adhesión Celular/química , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Matriz Extracelular/química , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Humanos , Ácido Hialurónico/química , Ácido Hialurónico/metabolismo , Ratones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA