Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 62(6): 1036-1047, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30955045

RESUMEN

AIMS/HYPOTHESIS: The molecular response and function of pancreatic islet cells during metabolic stress is a complex process. The anatomical location and small size of pancreatic islets coupled with current methodological limitations have prevented the achievement of a complete, coherent picture of the role that lipids and proteins play in cellular processes under normal conditions and in diseased states. Herein, we describe the development of untargeted tissue imaging mass spectrometry (IMS) technologies for the study of in situ protein and, more specifically, lipid distributions in murine and human pancreases. METHODS: We developed matrix-assisted laser desorption/ionisation (MALDI) IMS protocols to study metabolite, lipid and protein distributions in mouse (wild-type and ob/ob mouse models) and human pancreases. IMS allows for the facile discrimination of chemically similar lipid and metabolite isoforms that cannot be distinguished using standard immunohistochemical techniques. Co-registration of MS images with immunofluorescence images acquired from serial tissue sections allowed accurate cross-registration of cell types. By acquiring immunofluorescence images first, this serial section approach guides targeted high spatial resolution IMS analyses (down to 15 µm) of regions of interest and leads to reduced time requirements for data acquisition. RESULTS: MALDI IMS enabled the molecular identification of specific phospholipid and glycolipid isoforms in pancreatic islets with intra-islet spatial resolution. This technology shows that subtle differences in the chemical structure of phospholipids can dramatically affect their distribution patterns and, presumably, cellular function within the islet and exocrine compartments of the pancreas (e.g. 18:1 vs 18:2 fatty acyl groups in phosphatidylcholine lipids). We also observed the localisation of specific GM3 ganglioside lipids [GM3(d34:1), GM3(d36:1), GM3(d38:1) and GM3(d40:1)] within murine islet cells that were correlated with a higher level of GM3 synthase as verified by immunostaining. However, in human pancreas, GM3 gangliosides were equally distributed in both the endocrine and exocrine tissue, with only one GM3 isoform showing islet-specific localisation. CONCLUSIONS/INTERPRETATION: The development of more complete molecular profiles of pancreatic tissue will provide important insight into the molecular state of the pancreas during islet development, normal function, and diseased states. For example, this study demonstrates that these results can provide novel insight into the potential signalling mechanisms involving phospholipids and glycolipids that would be difficult to detect by targeted methods, and can help raise new hypotheses about the types of physiological control exerted on endocrine hormone-producing cells in islets. Importantly, the in situ measurements afforded by IMS do not require a priori knowledge of molecules of interest and are not susceptible to the limitations of immunohistochemistry, providing the opportunity for novel biomarker discovery. Notably, the presence of multiple GM3 isoforms in mouse islets and the differential localisation of lipids in human tissue underscore the important role these molecules play in regulating insulin modulation and suggest species, organ, and cell specificity. This approach demonstrates the importance of both high spatial resolution and high molecular specificity to accurately survey the molecular composition of complex, multi-functional tissues such as the pancreas.


Asunto(s)
Islotes Pancreáticos/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Animales , Técnica del Anticuerpo Fluorescente , Gangliósidos/análisis , Humanos , Inmunohistoquímica , Ratones , Páncreas
2.
J Lipid Res ; 56(11): 2196-205, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26378094

RESUMEN

The thromboxane synthase converts prostaglandin H(2) to thromboxane A(2) and malondialdehyde (MDA) in approximately equimolar amounts. A reactive dicarbonyl, MDA forms covalent adducts of amino groups, including the ε-amine of lysine, but the importance of this reaction in platelets was unknown. Utilizing a novel LC/MS/MS method for analysis of one of the MDA adducts, the dilysyl-MDA cross-link, we demonstrated that dilysyl-MDA cross-links in human platelets are formed following platelet activation via the cyclooxygenase (COX)-1/thromboxane synthase pathway. Salicylamine and analogs of salicylamine were shown to react with MDA preferentially, thereby preventing formation of lysine adducts. Dilysyl-MDA cross-links were measured in two diseases known to be associated with increased platelet activation. Levels of platelet dilysyl-MDA cross-links were increased by 2-fold in metabolic syndrome relative to healthy subjects, and by 1.9-fold in sickle cell disease (SCD). In patients with SCD, the reduction of platelet dilysyl-MDA cross-links following administration of nonsteroidal anti-inflammatory drug provided evidence that MDA modifications of platelet proteins in this disease are derived from the COX pathway. In summary, MDA adducts of platelet proteins that cross-link lysines are formed on platelet activation and are increased in diseases associated with platelet activation. These protein modifications can be prevented by salicylamine-related scavengers.


Asunto(s)
Ácidos Aminosalicílicos/farmacología , Malondialdehído/sangre , Adulto , Anciano , Anemia de Células Falciformes/sangre , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Proteínas Sanguíneas/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Síndrome Metabólico/sangre , Persona de Mediana Edad , Activación Plaquetaria
3.
mSystems ; 9(1): e0109823, 2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38059647

RESUMEN

Helicobacter pylori colonization of the human stomach is a strong risk factor for gastric cancer. To investigate H. pylori-induced gastric molecular alterations, we used a Mongolian gerbil model of gastric carcinogenesis. Histologic evaluation revealed varying levels of atrophic gastritis (a premalignant condition characterized by parietal and chief cell loss) in H. pylori-infected animals, and transcriptional profiling revealed a loss of markers for these cell types. We then assessed the spatial distribution and relative abundance of proteins in the gastric tissues using imaging mass spectrometry and liquid chromatography with tandem mass spectrometry. We detected striking differences in the protein content of corpus and antrum tissues. Four hundred ninety-two proteins were preferentially localized to the corpus in uninfected animals. The abundance of 91 of these proteins was reduced in H. pylori-infected corpus tissues exhibiting atrophic gastritis compared with infected corpus tissues exhibiting non-atrophic gastritis or uninfected corpus tissues; these included numerous proteins with metabolic functions. Fifty proteins localized to the corpus in uninfected animals were diffusely delocalized throughout the stomach in infected tissues with atrophic gastritis; these included numerous proteins with roles in protein processing. The corresponding alterations were not detected in animals infected with a H. pylori ∆cagT mutant (lacking Cag type IV secretion system activity). These results indicate that H. pylori can cause loss of proteins normally localized to the gastric corpus as well as diffuse delocalization of corpus-specific proteins, resulting in marked changes in the normal gastric molecular partitioning into distinct corpus and antrum regions.IMPORTANCEA normal stomach is organized into distinct regions known as the corpus and antrum, which have different functions, cell types, and gland architectures. Previous studies have primarily used histologic methods to differentiate these regions and detect H. pylori-induced alterations leading to stomach cancer. In this study, we investigated H. pylori-induced gastric molecular alterations in a Mongolian gerbil model of carcinogenesis. We report the detection of numerous proteins that are preferentially localized to the gastric corpus but not the antrum in a normal stomach. We show that stomachs with H. pylori-induced atrophic gastritis (a precancerous condition characterized by the loss of specialized cell types) exhibit marked changes in the abundance and localization of proteins normally localized to the gastric corpus. These results provide new insights into H. pylori-induced gastric molecular alterations that are associated with the development of stomach cancer.


Asunto(s)
Gastritis Atrófica , Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Lesiones Precancerosas , Neoplasias Gástricas , Animales , Humanos , Gastritis Atrófica/inducido químicamente , Neoplasias Gástricas/patología , Gerbillinae , Mucosa Gástrica/patología , Gastritis/patología , Atrofia/patología , Infecciones por Helicobacter/complicaciones , Lesiones Precancerosas/patología , Carcinogénesis/patología
4.
J Am Soc Mass Spectrom ; 32(10): 2583-2591, 2021 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-34515472

RESUMEN

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) allows for highly multiplexed, unlabeled mapping of analytes from tissue sections. However, further work is needed to improve the sensitivity and depth of coverage for protein and peptide IMS. We demonstrate signal enhancement of proteolytic peptides from thin tissue sections of human kidney by conventional MALDI (MALDI-1) augmented using a second ionizing laser (termed MALDI-2). Proteins were digested in situ using trypsin prior to IMS analysis. For tentative identification of peptides and proteins, a tissue homogenate from the same organ used for IMS was analyzed by LC-MS/MS, and data are available via ProteomeXchange with identifier PXD023877. These identified proteins were then digested in silico to generate a database of theoretical peptides to then match to MALDI IMS data sets. Peptides were tentatively identified by matching the MALDI peak list to the database peptide list based on mass accuracy (5 ppm mass error). This resulted in 1337 ± 96 (n = 3) peptides and 2076 ± 362 (n = 3) unique peptides matched to IMS peaks from MALDI-1 and MALDI-2, respectively. Protein identifications requiring two or more peptides per protein resulted in 276 ± 20 proteins with MALDI-1 and 401 ± 60 with MALDI-2. These results demonstrate that MALDI-2 provides enhanced sensitivity for the spatial mapping of tryptic peptides and significantly increases the number of proteins identified in IMS experiments.


Asunto(s)
Técnicas Histológicas/métodos , Imagen Molecular/métodos , Fragmentos de Péptidos/análisis , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Cromatografía Liquida , Humanos , Riñón/química , Riñón/diagnóstico por imagen , Fragmentos de Péptidos/química , Fragmentos de Péptidos/metabolismo , Tripsina/metabolismo
5.
J Histochem Cytochem ; 68(6): 403-411, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32466698

RESUMEN

Clear cell renal cell carcinoma (ccRCC) and chromophobe renal cell carcinoma (chRCC) are relatively common tumors that can have significant risk for mortality. Treatment and prognostication in renal cell carcinoma (RCC) are dependent upon correct histologic typing. ccRCC and chRCC are generally straightforward to diagnose based on histomorphology alone. However, high-grade ccRCC and chRCC can sometimes resemble each other morphologically, particularly in small biopsies. Multiple immunostains and/or colloidal iron stain are sometimes required to differentiate the two. Imaging mass spectrometry (IMS) allows simultaneous spatial mapping of thousands of biomarkers, using formalin-fixed paraffin-embedded tissue sections. In this study, we evaluate the ability of IMS to differentiate between World Health Organization/International Society for Urological Pathology grade 3 ccRCC and chRCC. IMS spectra from a training set of 14 ccRCC and 13 chRCC were evaluated via support vector machine algorithm with a linear kernel for machine learning, building a classification model. The classification model was applied to a separate validation set of 6 ccRCC and 6 chRCC, with 19 to 20, 150-µm diameter tumor foci in each case sampled by IMS. Most evaluated tumor foci were classified correctly as ccRCC versus chRCC (99% accuracy, kappa=0.98), demonstrating that IMS is an accurate tool in differentiating high-grade ccRCC and chRCC.


Asunto(s)
Carcinoma de Células Renales/diagnóstico por imagen , Neoplasias Renales/diagnóstico por imagen , Espectrometría de Masas , Imagen Molecular , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Diagnóstico Diferencial , Femenino , Humanos , Masculino , Persona de Mediana Edad
6.
NPJ Breast Cancer ; 6: 27, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32613078

RESUMEN

Distinguishing low-grade phyllodes tumor from fibroadenoma is practically challenging due to their overlapping histologic features. However, the final interpretation is essential to surgeons, who base their management on the final pathology report. Patients who receive a diagnosis of fibroadenoma might not undergo any additional intervention while lumpectomy with wide margins is the standard of care for phyllodes tumor, which can have significant cosmetic consequences. We studied the clinical, immunophenotypic, and proteomics profiles of 31 histologically confirmed low-grade phyllodes tumor and 30 fibroadenomas. Matrix-assisted laser desorption ionization (MALDI) imaging mass spectrometry (IMS) and immunohistochemistry for Ki-67, p53, ß-catenin, and E-cadherin were performed on all cases. After the mass spectra for all 31 cases of low-grade phyllodes tumor and 30 cases of fibroadenoma were collected, an average peak value for all cases was generated. There was no significant difference in the overall mass spectra pattern in any of the peaks identified. There was also overlap in the percentage of cells staining positive for Ki-67, p53, ß-catenin, and E-cadherin. The two groups of patients showed no statistically significant difference in age, tumor size, or disease-free survival. Neither group developed malignant transformation, distant metastases, or disease-related mortality. We have demonstrated low-grade phyllodes tumor and fibroadenoma to show significant overlapping clinical and proteomics features.

7.
J Mass Spectrom ; 54(8): 716-727, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31254303

RESUMEN

Matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI IMS) is a molecular imaging technology uniquely capable of untargeted measurement of proteins, lipids, and metabolites while retaining spatial information about their location in situ. This powerful combination of capabilities has the potential to bring a wealth of knowledge to the field of molecular histology. Translation of this innovative research tool into clinical laboratories requires the development of reliable sample preparation protocols for the analysis of proteins from formalin-fixed paraffin-embedded (FFPE) tissues, the standard preservation process in clinical pathology. Although ideal for stained tissue analysis by microscopy, the FFPE process cross-links, disrupts, or can remove proteins from the tissue, making analysis of the protein content challenging. To date, reported approaches differ widely in process and efficacy. This tutorial presents a strategy derived from systematic testing and optimization of key parameters, for reproducible in situ tryptic digestion of proteins in FFPE tissue and subsequent MALDI IMS analysis. The approach describes a generalized method for FFPE tissues originating from virtually any source.


Asunto(s)
Proteínas/análisis , Manejo de Especímenes/métodos , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Análisis de Matrices Tisulares/métodos , Formaldehído/química , Humanos , Adhesión en Parafina , Proteolisis , Fijación del Tejido , Tripsina/química
8.
Artículo en Inglés | MEDLINE | ID: mdl-30637122

RESUMEN

BACKGROUND: The Vanderbilt Institute for Clinical and Translational Research piloted the development of Project PLACENTA (PathLink Acquired gEstatioNal Tissue bAnk). This project investigated the feasibility of a fresh gestational tissue biobank, which provides tissue linked to electronic medical records for investigators interested in maternal-fetal health. METHODS: We developed a pipeline for collection of placental tissue from Labor and Delivery within approximately 30 minutes of delivery. An email alert was developed, to signal delivery, with the ability to specifically flag patients with certain phenotypic traits. Once collected, 4 to 8 mm punch biopsy cores were snap frozen and subsequently used for DNA, RNA and protein extraction. Tissue was also collected for Formalin Fixed Paraffin Embedded (FFPE) histology, flow cytometry, and quality control measures. RESULTS: Of 60 deliveries using the email notification system, 25 (42%) were sent to Pathology or assigned to other research protocols and were not available for collection, 10 (16%) were discarded prior to arrival at Labor and Delivery, and 25 (42%) were available for collection. Twenty placentas were collected and averaged 38 minutes per collection. DNA extraction yielded an average of 53 µg/µl per sample and RNA extraction yielded 679 ng/µl on average per sample. Proteomic studies showed no degradation of protein, abundant and similar quantities of protein across samples and differentiation between the amnion, decidua, and villi. Histological studies showed good quality for interpretation and occasional pathology including multifocal chronic villitis, meconium laden macrophages, and Stage 2 acute chorioamnionitis. Flow cytometry demonstrated good cell viability after isolation.

9.
Sci Transl Med ; 10(432)2018 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-29540616

RESUMEN

Diseases are characterized by distinct changes in tissue molecular distribution. Molecular analysis of intact tissues traditionally requires preexisting knowledge of, and reagents for, the targets of interest. Conversely, label-free discovery of disease-associated tissue analytes requires destructive processing for downstream identification platforms. Tissue-based analyses therefore sacrifice discovery to gain spatial distribution of known targets or sacrifice tissue architecture for discovery of unknown targets. To overcome these obstacles, we developed a multimodality imaging platform for discovery-based molecular histology. We apply this platform to a model of disseminated infection triggered by the pathogen Staphylococcus aureus, leading to the discovery of infection-associated alterations in the distribution and abundance of proteins and elements in tissue in mice. These data provide an unbiased, three-dimensional analysis of how disease affects the molecular architecture of complex tissues, enable culture-free diagnosis of infection through imaging-based detection of bacterial and host analytes, and reveal molecular heterogeneity at the host-pathogen interface.


Asunto(s)
Imagen Molecular/métodos , Staphylococcus aureus/metabolismo , Animales , Femenino , Interacciones Huésped-Patógeno , Imagen por Resonancia Magnética , Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/microbiología
10.
J Am Coll Surg ; 218(4): 707-20, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24655859

RESUMEN

BACKGROUND: Wilms tumor (WT) is the most common childhood kidney cancer worldwide and arises in children of black African ancestry with greater frequency and severity than other race groups. A biologic basis for this pediatric cancer disparity has not been previously determined. We hypothesized that unique molecular fingerprints might underlie the variable incidence and distinct disease characteristics of WT observed between race groups. STUDY DESIGN: To evaluate molecular disparities between WTs of different race groups, the Children's Oncology Group provided 80 favorable histology specimens divided evenly between black and white patients and matched for disease characteristics. As a surrogate of black sub-Saharan African patients, we also analyzed 18 Kenyan WT specimens. Tissues were probed for peptide profiles using matrix-assisted laser desorption ionization time of flight imaging mass spectrometry. To control for histologic variability within and between specimens, cellular regions were analyzed separately as triphasic (containing blastema, epithelia, and stroma), blastema only, and stroma only. Data were queried using ClinProTools and statistically analyzed. RESULTS: Peptide profiles, detected in triphasic WT regions, recognized race with good accuracy, which increased for blastema- or stroma-only regions. Peptide profiles from North American WTs differed between black and white race groups but were far more similar in composition than Kenyan specimens. Individual peptides were identified that also associated with WT patient and disease characteristics (eg, treatment failure and stage). Statistically significant peptide fragments were used to sequence proteins, revealing specific cellular signaling pathways and candidate drug targets. CONCLUSIONS: Wilms tumor specimens arising among different race groups show unique molecular fingerprints that could explain disparate incidences and biologic behavior and that could reveal novel therapeutic targets.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Población Negra , Disparidades en el Estado de Salud , Neoplasias Renales/etnología , Proteoma/metabolismo , Población Blanca , Tumor de Wilms/etnología , Algoritmos , Niño , Preescolar , Análisis por Conglomerados , Femenino , Humanos , Kenia , Neoplasias Renales/metabolismo , Masculino , Análisis de Componente Principal , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Estados Unidos , Tumor de Wilms/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA