RESUMEN
Alphaviruses cause severe arthritogenic or encephalitic disease. The E1 structural glycoprotein is highly conserved in these viruses and mediates viral fusion with host cells. However, the role of antibody responses to the E1 protein in immunity is poorly understood. We isolated E1-specific human monoclonal antibodies (mAbs) with diverse patterns of recognition for alphaviruses (ranging from Eastern equine encephalitis virus [EEEV]-specific to alphavirus cross-reactive) from survivors of natural EEEV infection. Antibody binding patterns and epitope mapping experiments identified differences in E1 reactivity based on exposure of epitopes on the glycoprotein through pH-dependent mechanisms or presentation on the cell surface prior to virus egress. Therapeutic efficacy in vivo of these mAbs corresponded with potency of virus egress inhibition in vitro and did not require Fc-mediated effector functions for treatment against subcutaneous EEEV challenge. These studies reveal the molecular basis for broad and protective antibody responses to alphavirus E1 proteins.
Asunto(s)
Alphavirus/inmunología , Anticuerpos Antivirales/inmunología , Reacciones Cruzadas/inmunología , Proteínas Virales/inmunología , Liberación del Virus/fisiología , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/aislamiento & purificación , Anticuerpos Neutralizantes/inmunología , Antígenos Virales/inmunología , Línea Celular , Virus Chikungunya/inmunología , Virus de la Encefalitis Equina del Este/inmunología , Encefalomielitis Equina/inmunología , Encefalomielitis Equina/virología , Mapeo Epitopo , Femenino , Caballos , Humanos , Concentración de Iones de Hidrógeno , Articulaciones/patología , Masculino , Ratones Endogámicos C57BL , Modelos Biológicos , Unión Proteica , ARN Viral/metabolismo , Receptores Fc/metabolismo , Temperatura , Virión/metabolismo , Internalización del VirusRESUMEN
The emergence of ZIKV infection has prompted a global effort to develop safe and effective vaccines. We engineered a lipid nanoparticle (LNP) encapsulated modified mRNA vaccine encoding wild-type or variant ZIKV structural genes and tested immunogenicity and protection in mice. Two doses of modified mRNA LNPs encoding prM-E genes that produced virus-like particles resulted in high neutralizing antibody titers (â¼1/100,000) that protected against ZIKV infection and conferred sterilizing immunity. To offset a theoretical concern of ZIKV vaccines inducing antibodies that cross-react with the related dengue virus (DENV), we designed modified prM-E RNA encoding mutations destroying the conserved fusion-loop epitope in the E protein. This variant protected against ZIKV and diminished production of antibodies enhancing DENV infection in cells or mice. A modified mRNA vaccine can prevent ZIKV disease and be adapted to reduce the risk of sensitizing individuals to subsequent exposure to DENV, should this become a clinically relevant concern.
Asunto(s)
ARN Mensajero/administración & dosificación , Vacunas Virales/inmunología , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/prevención & control , Animales , Epítopos/inmunología , Femenino , Lípidos/química , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas/química , ARN Mensajero/genética , ARN Mensajero/inmunología , Vacunas Virales/administración & dosificación , Virus Zika/inmunologíaRESUMEN
Selection and development of monoclonal antibody (mAb) therapeutics against pathogenic viruses depends on certain functional characteristics. Neutralization potency, or the half-maximal inhibitory concentration (IC50) values, is an important characteristic of candidate therapeutic antibodies. Structural insights into the bases of neutralization potency differences between antiviral neutralizing mAbs are lacking. In this report, we present cryo-electron microscopy (EM) reconstructions of three anti-Eastern equine encephalitis virus (EEEV) neutralizing human mAbs targeting overlapping epitopes on the E2 protein, with greater than 20-fold differences in their respective IC50 values. From our structural and biophysical analyses, we identify several constraints that contribute to the observed differences in the neutralization potencies. Cryo-EM reconstructions of EEEV in complex with these Fab fragments reveal structural constraints that dictate intravirion or intervirion cross-linking of glycoprotein spikes by their IgG counterparts as a mechanism of neutralization. Additionally, we describe critical features for the recognition of EEEV by these mAbs including the epitope-paratope interaction surface, occupancy, and kinetic differences in on-rate for binding to the E2 protein. Each constraint contributes to the extent of EEEV inhibition for blockade of virus entry, fusion, and/or egress. These findings provide structural and biophysical insights into the differences in mechanism and neutralization potencies of these antibodies, which help inform rational design principles for candidate vaccines and therapeutic antibodies for all icosahedral viruses.
Asunto(s)
Virus de la Encefalitis Equina del Este , Encefalomielitis Equina , Humanos , Caballos , Animales , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Microscopía por Crioelectrón , Epítopos , Anticuerpos Monoclonales , Pruebas de NeutralizaciónRESUMEN
Every year, millions of people worldwide are infected with dengue virus (DENV), with a significant number developing severe life-threatening disease. There are currently no broadly indicated vaccines or therapeutics available for treatment of DENV infection. Here, we show that AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, was a potent inhibitor of DENV serotypes 2 and 3 in vitro, requiring concentrations of 0.48 and 0.77 µM, respectively, to inhibit viral replication by 50% (EC50) in Huh-7 cells. AT-281 was also a potent inhibitor of all other flaviviruses tested, with EC50 values ranging from 0.19 to 1.41 µM. Little to no cytotoxicity was observed for AT-281 at concentrations up to 170 µM. After oral administration of AT-752, substantial levels of the active triphosphate metabolite AT-9010 were formed in vivo in peripheral blood mononuclear cells of mice, rats, and monkeys. Furthermore, AT-9010 competed with GTP in RNA template-primer elongation assays with DENV2 RNA polymerase, which is essential for viral replication, with incorporation of AT-9010 resulting in termination of RNA synthesis. In AG129 mice infected with DENV D2Y98P, treatment with AT-752 significantly reduced viremia and morbidity and increased survival. The demonstrated in vitro and in vivo activity of AT-752 suggests that it is a promising compound for the treatment of dengue virus infection and is currently under evaluation in clinical studies.
Asunto(s)
Virus del Dengue , Dengue , Flavivirus , Profármacos , Animales , Antivirales/farmacología , Antivirales/uso terapéutico , Dengue/tratamiento farmacológico , Guanosina/farmacología , Guanosina/uso terapéutico , Leucocitos Mononucleares , Ratones , Nucleótidos/uso terapéutico , Profármacos/farmacología , Profármacos/uso terapéutico , Ratas , Replicación ViralRESUMEN
Various (North)-methanocarba adenosine derivatives, containing rigid bicyclo[3.1.0]hexane ribose substitution, were screened for activity against representative viruses, and inhibition was observed after treatment of Enterovirus A71 with a 2-chloro-N6-1-cyclopropyl-2-methylpropan-1-yl derivative (17). µM activity was also seen when testing 17 against other enteroviruses in the Picornaviridae family. Based on this hit, structural congeners of 17, containing other N6-alkyl groups and 5' modifications, were synthesized and tested. The structure activity relationship is relatively narrow, with most modifications of the adenine or the methanocarba ring reducing or abolishing the inhibitory potency. 4'-Truncated 31 (MRS5474), 4'-fluoromethyl 48 (MRS7704) and 4'-chloromethyl 49 nucleosides displayed EC50 ~3-4 µM, and 31 and 48 achieved SI ≥10. However, methanocarba analogues of ribavirin and N6-benzyladenosine, shown previously to have anti-EV-A71 activity, were inactive. Thus, we identified methanocarba nucleosides as a new scaffold for enterovirus inhibition with a narrow structure activity relationship and no similarity to previously published anti-enteroviral nucleosides.
Asunto(s)
Adenosina/farmacología , Antivirales/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Enterovirus Humano A/efectos de los fármacos , Adenosina/síntesis química , Animales , Antivirales/síntesis química , Compuestos Bicíclicos con Puentes/síntesis química , Línea Celular Tumoral , Chlorocebus aethiops , Humanos , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/farmacología , Relación Estructura-Actividad , Células VeroRESUMEN
An understanding of the pathogenesis of infection with the Zika virus in the male reproductive tract is vital for the development of vaccines and antivirals that will limit or prevent sexual transmission. Two common immunocompromised mouse strains used in transmission studies-male with genes encoding interferon types I and II receptor gene knockout (IFNAR/IFNGR; AG129) and with interferon type 1 receptor knockout (Ifnar-/-) were infected with a Puerto Rican Zika virus isolate (PRVABC59), and pathology was assessed 5 to 11 days after infection. Virus was detected by immunohistochemistry and quantitative RT-PCR in the testicle and epididymis of AG129 and Ifnar-/- mice, and by immunohistochemistry in the prostate and seminal vesicle of infected AG129 mice. Severe disease manifestations initiating as epididymitis and progressing to orchitis were observed in both models, with more severe inflammation noted in the AG129 mouse strain. Significant inflammation was not observed in any evaluated accessory sex gland at any point during infection. Time-course analysis of infection revealed an increase in the severity of disease within the epididymis of both strains, indicating a potential route of sexual transmission. Male mice with Ifnar-/- may better recapitulate Zika virus in humans and provide insight into the mechanism of sexual transmission, due to milder histopathologic lesions, the presence of histologically normal sperm in epididymal tubules, and an ability to survive the acute phase of disease.
Asunto(s)
Genitales Masculinos/patología , Genitales Masculinos/virología , Receptor de Interferón alfa y beta/deficiencia , Infección por el Virus Zika/patología , Infección por el Virus Zika/virología , Virus Zika/fisiología , Enfermedad Aguda , Animales , Epidídimo/patología , Inflamación/patología , Masculino , Ratones Noqueados , ARN Viral/análisis , Receptor de Interferón alfa y beta/metabolismo , Testículo/patologíaRESUMEN
Zika virus (ZIKV) has received widespread attention because of its effect on the developing fetus. It is becoming apparent, however, that severe neurological sequelae, such as Guillian-Barrë syndrome (GBS), myelitis, encephalitis, and seizures can occur after infection of adults. This study demonstrates that a contemporary strain of ZIKV can widely infect astrocytes and neurons in the brain and spinal cord of adult, interferon α/ß receptor knockout mice (AG129 strain) and cause progressive hindlimb paralysis, as well as severe seizure-like activity during the acute phase of disease. The severity of hindlimb motor deficits correlated with increased numbers of ZIKV-infected lumbosacral spinal motor neurons and decreased numbers of spinal motor neurons. Electrophysiological compound muscle action potential (CMAP) amplitudes in response to stimulation of the lumbosacral spinal cord were reduced when obvious motor deficits were present. ZIKV immunoreactivity was high, intense, and obvious in tissue sections of the brain and spinal cord. Infection in the brain and spinal cord was also associated with astrogliosis as well as T cell and neutrophil infiltration. CMAP and histological analysis indicated that peripheral nerve and muscle functions were intact. Consequently, motor deficits in these circumstances appear to be primarily due to myelitis and possibly encephalitis as opposed to a peripheral neuropathy or a GBS-like syndrome. Thus, acute ZIKV infection of adult AG129 mice may be a useful model for ZIKV-induced myelitis, encephalitis, and seizure activity.
Asunto(s)
Encefalitis/fisiopatología , Trastornos Motores/fisiopatología , Mielitis/fisiopatología , Convulsiones/fisiopatología , Infección por el Virus Zika/fisiopatología , Virus Zika/patogenicidad , Potenciales de Acción/fisiología , Animales , Astrocitos/inmunología , Astrocitos/patología , Astrocitos/virología , Encéfalo/inmunología , Encéfalo/patología , Encéfalo/virología , Modelos Animales de Enfermedad , Encefalitis/inmunología , Encefalitis/virología , Femenino , Humanos , Interferón-alfa/deficiencia , Interferón-alfa/genética , Interferón-alfa/inmunología , Interferón beta/deficiencia , Interferón beta/genética , Interferón beta/inmunología , Interferón gamma/deficiencia , Interferón gamma/genética , Interferón gamma/inmunología , Masculino , Ratones , Ratones Noqueados , Trastornos Motores/inmunología , Trastornos Motores/virología , Neuronas Motoras/inmunología , Neuronas Motoras/patología , Neuronas Motoras/virología , Músculo Esquelético/fisiología , Mielitis/inmunología , Mielitis/virología , Neutrófilos/inmunología , Neutrófilos/patología , Neutrófilos/virología , Convulsiones/inmunología , Convulsiones/virología , Médula Espinal/inmunología , Médula Espinal/patología , Médula Espinal/virología , Linfocitos T/inmunología , Linfocitos T/patología , Linfocitos T/virología , Virus Zika/crecimiento & desarrollo , Infección por el Virus Zika/inmunología , Infección por el Virus Zika/virologíaRESUMEN
Zika virus (ZIKV) infection can result in serious consequences, including severe congenital manifestations, persistent infection in the testes, and neurologic sequelae. After a pandemic emergence, the virus has spread to much of North and South America and has been introduced to many countries outside of ZIKV-endemic areas as infected travelers return to their home countries. Rodent models have been important in gaining a better understanding of the wide range of disease etiologies associated with ZIKV infection and for the initial phase of developing countermeasures to prevent or treat viral infections. We discuss herein the advantages and disadvantages of small-animal models that have been developed to replicate various aspects of disease associated with ZIKV infection.
Asunto(s)
Infección por el Virus Zika/virología , Animales , Modelos Animales de Enfermedad , Humanos , Roedores , Virus ZikaRESUMEN
Alphaviruses present serious health threats as emerging and re-emerging viruses. Venezuelan equine encephalitis virus (VEEV), a New World alphavirus, can cause encephalitis in humans and horses, but there are no therapeutics for treatment. To date, compounds reported as anti-VEEV or anti-alphavirus inhibitors have shown moderate activity. To discover new classes of anti-VEEV inhibitors with novel viral targets, we used a high-throughput screen based on the measurement of cell protection from live VEEV TC-83-induced cytopathic effect to screen a 340,000 compound library. Of those, we identified five novel anti-VEEV compounds and chose a quinazolinone compound, CID15997213 (IC50â=â0.84 µM), for further characterization. The antiviral effect of CID15997213 was alphavirus-specific, inhibiting VEEV and Western equine encephalitis virus, but not Eastern equine encephalitis virus. In vitro assays confirmed inhibition of viral RNA, protein, and progeny synthesis. No antiviral activity was detected against a select group of RNA viruses. We found mutations conferring the resistance to the compound in the N-terminal domain of nsP2 and confirmed the target residues using a reverse genetic approach. Time of addition studies showed that the compound inhibits the middle stage of replication when viral genome replication is most active. In mice, the compound showed complete protection from lethal VEEV disease at 50 mg/kg/day. Collectively, these results reveal a potent anti-VEEV compound that uniquely targets the viral nsP2 N-terminal domain. While the function of nsP2 has yet to be characterized, our studies suggest that the protein might play a critical role in viral replication, and further, may represent an innovative opportunity to develop therapeutic interventions for alphavirus infection.
Asunto(s)
Antivirales/farmacología , Virus de la Encefalitis Equina Venezolana/efectos de los fármacos , Encefalomielitis Equina Venezolana/tratamiento farmacológico , Quinazolinonas/farmacología , Animales , Línea Celular , Chlorocebus aethiops , Cricetinae , Modelos Animales de Enfermedad , Farmacorresistencia Viral/genética , Virus de la Encefalitis Equina Venezolana/genética , Encefalomielitis Equina Venezolana/virología , Ensayos Analíticos de Alto Rendimiento , Ratones , Ratones Endogámicos C3H , Especificidad de la Especie , Relación Estructura-Actividad , Células Vero , Ensayo de Placa Viral , Replicación Viral/efectos de los fármacosRESUMEN
No effective antiviral therapies are currently available to treat disease after infection with yellow fever virus (YFV). A Syrian golden hamster model of yellow fever (YF) was used to characterize the effect of treatment with BCX4430, a novel adenosine nucleoside analog. Significant improvement in survival was observed after treatment with BCX4430 at 4 mg/kg of body weight per day dosed intraperitoneally (i.p.) twice daily (BID). Treatment with BCX4430 at 12.5 mg/kg/day administered i.p. BID for 7 days offered complete protection from mortality and also resulted in significant improvement of other YF disease parameters, including weight loss, serum alanine aminotransferase levels (6 days postinfection [dpi]), and viremia (4 dpi). In uninfected hamsters, BCX4430 at 200 mg/kg/day administered i.p. BID for 7 days was well tolerated and did not result in mortality or weight loss, suggesting a potentially wide therapeutic index. Treatment with BCX4430 at 12 mg/kg/day i.p. remained effective when administered once daily and for only 4 days. Moreover, BCX4430 dosed at 200 mg/kg/day i.p. BID for 7 days effectively treated YF, even when treatment was delayed up to 4 days after virus challenge, corresponding with peak viral titers in the liver and serum. BCX4430 treatment did not preclude a protective antibody response, as higher neutralizing antibody (nAb) concentrations corresponded with increasing delays of treatment initiation, and greater nAb responses resulted in the protection of animals from a secondary challenge with YFV. In summary, BCX4430 is highly active in a hamster model of YF, even when treatment is initiated at the peak of viral replication.
Asunto(s)
Antivirales/uso terapéutico , Nucleósidos de Purina/uso terapéutico , Fiebre Amarilla/tratamiento farmacológico , Virus de la Fiebre Amarilla/efectos de los fármacos , Virus de la Fiebre Amarilla/inmunología , Adenina/análogos & derivados , Adenosina/análogos & derivados , Adenosina/uso terapéutico , Alanina Transaminasa/sangre , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , Células Cultivadas , Cricetinae , Modelos Animales de Enfermedad , Femenino , Mesocricetus , Pirrolidinas , Resultado del Tratamiento , Ensayo de Placa Viral , Viremia/tratamiento farmacológico , Viremia/virología , Fiebre Amarilla/mortalidad , Fiebre Amarilla/virologíaRESUMEN
BACKGROUND: Neurological respiratory insufficiency strongly correlates with mortality among rodents infected with West Nile virus (WNV), which suggests that this is a primary mechanism of death in rodents and possibly fatal West Nile neurological disease in human patients. METHODS: To explore the possibility that neurological respiratory insufficiency is a broad mechanism of death in cases of viral encephalitis, plethysmography was evaluated in mice infected with 3 flaviviruses and 2 alphaviruses. Pathology was investigated by challenging the diaphragm, using electromyography with hypercapnia and optogenetic photoactivation. RESULTS: Among infections due to all but 1 alphavirus, death was strongly associated with a suppressed minute volume. Virally infected mice with a very low minute volume did not neurologically respond to hypercapnia or optogenetic photoactivation of the C4 cervical cord. Neurons with the orexin 1 receptor protein in the ventral C3-5 cervical cord were statistically diminished in WNV-infected mice with a low minute volume as compared to WNV-infected or sham-infected mice without respiratory insufficiency. Also, WNV-infected cells were adjacent to neurons with respiratory functions in the medulla. CONCLUSIONS: Detection of a common neurological mechanism of death among viral encephalitides creates opportunities to create broad-spectrum therapies that target relevant neurological cells in patients with types of viral encephalitis that have not been treatable in the past.
Asunto(s)
Infecciones por Alphavirus/patología , Infecciones por Alphavirus/virología , Encefalitis Viral/complicaciones , Infecciones por Flavivirus/patología , Infecciones por Flavivirus/virología , Insuficiencia Respiratoria/epidemiología , Insuficiencia Respiratoria/mortalidad , Animales , Diafragma/fisiología , Modelos Animales de Enfermedad , Electromiografía , Femenino , Hipercapnia , Ratones , PletismografíaRESUMEN
Ophidian serpentoviruses, positive-sense RNA viruses in the order Nidovirales, are important infectious agents of both captive and free-ranging reptiles. Although the clinical significance of these viruses can be variable, some serpentoviruses are pathogenic and potentially fatal in captive snakes. While serpentoviral diversity and disease potential are well documented, little is known about the fundamental properties of these viruses, including their potential host ranges, kinetics of growth, environmental stability, and susceptibility to common disinfectants and viricides. To address this, three serpentoviruses were isolated in culture from three unique PCR-positive python species: Ball python (Python regius), green tree python (Morelia viridis), and Stimson's python (Antaresia stimsoni). A median tissue culture infectious dose (TCID50) was established to characterize viral stability, growth, and susceptibility. All isolates showed an environmental stability of 10-12 days at room temperature (20 °C). While all three viruses produced variable peak titers on three different cell lines when incubated at 32 °C, none of the viruses detectably replicated at 35 °C. All viruses demonstrated a wide susceptibility to sanitizers, with 10% bleach, 2% chlorhexidine, and 70% ethanol inactivating the virus in one minute and 7% peroxide and a quaternary ammonium solution within three minutes. Of seven tested antiviral agents, remdesivir, ribavirin, and NITD-008, showed potent antiviral activity against the three viruses. Finally, the three isolates successfully infected 32 unique tissue culture cell lines representing different diverse reptile taxa and select mammals and birds as detected by epifluorescent immunostaining. This study represents the first characterization of in vitro properties of growth, stability, host range, and inactivation for a serpentovirus. The reported results provide the basis for procedures to mitigate the spread of serpentoviruses in captive snake colonies as well as identify potential non-pharmacologic and pharmacologic treatment options for ophidian serpentoviral infections.
RESUMEN
We report for the first time the antiviral activities of two iminovirs (antiviral imino-C-nucleosides) 1 and 2, structurally related to galidesivir (Immucillin A, BCX4430). An iminovir containing the 4-aminopyrrolo[2,1-f][1,2,4-triazine] nucleobase found in remdesivir exhibited submicromolar inhibition of multiple strains of influenza A and B viruses, as well as members of the Bunyavirales order. We also report the first syntheses of ProTide prodrugs of iminovir monophosphates, which unexpectedly displayed poorer viral inhibition than their parent nucleosides in vitro. An efficient synthesis of the 4-aminopyrrolo[2,1-f][1,2,4-triazine]-containing iminovir 2 was developed to enable preliminary in vivo studies, wherein it displayed significant toxicity in BALB/c mice and limited protection against influenza. Further modification of this anti-influenza iminovir will therefore be required to improve its therapeutic value.
RESUMEN
Venezuelan and eastern equine encephalitis viruses (VEEV and EEEV, respectively) are mosquito-borne, neuroinvasive human pathogens for which no FDA-approved therapeutic exists. Besides the biothreat posed by these viruses when aerosolized, arthropod transmission presents serious health risks to humans, as demonstrated by the 2019 outbreak of EEE disease in the United States that resulted in 38 confirmed cases, 19 deaths, and neurological effects in survivors. Here, we describe the discovery of a 2-pyrrolidinoquinazolinone scaffold, efficiently synthesized in two to five steps, whose structural optimization resulted in profound antiviral activity. The lead quinazolinone, BDGR-49, potently reduced cellular VEEV and EEEV titers by >7 log at 1 µM and exhibited suitable intravenous and oral pharmacokinetic profiles in BALB/c mice to achieve excellent brain exposure. Outstanding in vivo efficacy was observed in several lethal, subcutaneous infection mouse models using an 8-day dosing regimen. Prophylactically administered BDGR-49 at 25 mg kg-1 per day fully protected against a 10× LD50 VEEV Trinidad donkey (TrD) challenge in BALB/c mice. Similarly, we observed 70% protection when 10× LD50 EEEV FL93-939-infected C57BL/6 mice were treated prophylactically with BDGR-49 at 50 mg kg-1 per day. Last, we observed 100% therapeutic efficacy when mice, challenged with 10× LD50 VEEV TrD, were dosed at 48 hours after infection with BDGR-49 at 25 mg kg-1 per day. Mouse brain viral titers at 96 hours after infection were reduced to values near the limit of detection. Collectively, these results underscore the substantial development potential of a well-tolerated, brain-penetrant lead compound that shows promise in preventing and treating encephalitic alphavirus disease.
Asunto(s)
Virus de la Encefalitis Equina Venezolana , Encefalomielitis Equina Oriental , Humanos , Caballos , Animales , Ratones , Estados Unidos , Antivirales/farmacología , Antivirales/uso terapéutico , Ratones Endogámicos C57BL , EncéfaloRESUMEN
Yellow fever virus (YFV) is a reemerging global health threat, driven by several factors, including increased spread of the mosquito vector and rapid urbanization. Although a prophylactic vaccine exists, vaccine hesitancy, supply deficits, and distribution difficulties leave specific populations at risk of severe YFV disease, as evidenced by recent outbreaks in South America. To establish a treatment for patients with severe YFV infection, we tested 37 YFV-specific monoclonal antibodies isolated from vaccinated humans and identified two capable of potently neutralizing multiple pathogenic primary YFV isolates. Using both hamster and nonhuman primate models of lethal YFV infection, we demonstrate that a single administration of either of these two potently neutralizing antibodies during acute infection fully controlled viremia and prevented severe disease and death in treated animals. Given the potential severity of YFV-induced disease, our results show that these antibodies could be effective in saving lives and fill a much-needed void in managing YFV cases during outbreaks.
Asunto(s)
Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Cricetinae , Animales , Humanos , Virus de la Fiebre Amarilla , Anticuerpos Neutralizantes/uso terapéutico , Vacuna contra la Fiebre Amarilla/efectos adversos , Fiebre Amarilla/prevención & control , Anticuerpos Antivirales/uso terapéutico , Anticuerpos Monoclonales/uso terapéuticoRESUMEN
Yellow fever virus (YFV) continues to cause periodic outbreaks of severe disease throughout tropical regions of South America and Africa despite the availability of an effective vaccine. Despite efforts to control this virus for the last century, no antivirals have been approved for the treatment of YFV. The purpose of this study was to evaluate the broadly active antiviral compound remdesivir (RDV) in a hamster model of disease. Yellow fever (YF) disease in hamsters was prevented when treatment with RDV was initiated just prior to virus challenge, which was confirmed in a second study. Disease parameters including viremia, serum ALT and weight loss were significantly improved with RDV treatment in a dose-dependent manner. RDV was also effective when treatment was initiated as late as 4 days post-virus infection (dpi). These results demonstrate therapeutic efficacy of RDV in the treatment of YF in a relevant animal model of disease.
Asunto(s)
Vacuna contra la Fiebre Amarilla , Fiebre Amarilla , Adenosina Monofosfato/análogos & derivados , Alanina/análogos & derivados , Animales , Antivirales/uso terapéutico , Cricetinae , Viremia/tratamiento farmacológico , Fiebre Amarilla/prevención & control , Vacuna contra la Fiebre Amarilla/uso terapéutico , Virus de la Fiebre AmarillaRESUMEN
Yellow fever virus (YFV) is a zoonotic pathogen re-emerging in parts of the world, causing a viral hemorrhagic fever associated with high mortality rates. While an effective vaccine is available, having an effective antiviral against YFV is critical against unexpected outbreaks, or when vaccination is not recommended. We have previously identified AT-281, the free base of AT-752, an orally available double prodrug of a guanosine nucleotide analog, as a potent inhibitor of YFV in vitro, with a 50% effective concentration (EC50) of 0.31 µM. In hamsters infected with YFV (Jimenez strain), viremia rose about 4 log10-fold and serum alanine aminotransferase (ALT) 2-fold compared to sham-infected animals. Treatment with 1000 mg/kg AT-752 for 7 days, initiated 4 h prior to viral challenge, reduced viremia to below the limit of detection by day 4 post infection (pi) and returned ALT to normal levels by day 6 pi. When treatment with AT-752 was initiated 2 days pi, the virus titer and ALT dropped >2 log10 and 53% by day 4 and 6 pi, respectively. In addition, at 21 days pi, 70-100% of the infected animals in the treatment groups survived compared to 0% of the untreated group (p<0.001). Moreover, in vivo formation of the active triphosphate metabolite AT-9010 was measured in the animal tissues, with the highest concentrations in liver and kidney, organs that are vulnerable to the virus. The demonstrated in vivo activity of AT-752 suggests that it is a promising compound for clinical development in the treatment of YFV infection.
Asunto(s)
Antivirales/farmacología , Guanosina/análogos & derivados , Profármacos/farmacología , Fiebre Amarilla/tratamiento farmacológico , Virus de la Fiebre Amarilla/efectos de los fármacos , Animales , Antivirales/química , Antivirales/farmacocinética , Chlorocebus aethiops , Cricetinae , Femenino , Masculino , Mesocricetus , Profármacos/química , Profármacos/farmacocinética , Células Vero , Viremia , Fiebre Amarilla/virologíaRESUMEN
Chikungunya virus (CHIKV) has re-emerged as a significant human pathogen in the 21st century, causing periodic, and sometimes widespread, outbreaks over the past 15 years. Although mortality is very rare, a debilitating arthralgia is very common and may persist for months or years. There are no antivirals that are approved for the treatment of CHIKV infection, and current treatment options consist of supportive care only. Herein, we demonstrate the efficacy of a CHIKV-specific antibody in the prophylactic and therapeutic treatment of CHIKV in mouse models of disease. The fully human anti-CHIKV monoclonal Ab SVIR023 demonstrated broad in vitro activity against representative strains from the three major CHIKV clades. Therapeutic treatment with SVIR023 administered 1- or 3-days post-infection resulted in reduced virus in various tissues in a dose- and time-dependent manner. Prophylactic treatment up to 4 weeks prior to virus challenge was also effective in preventing disease in mice. Mice treated with SVIR023 and infected with CHIKV were resistant to secondary challenge and no evidence of antibody enhancement of disease was observed. Treatment with SVIR023 was effective in mouse models of CHIKV infection and disease and further evaluation towards clinical development is warranted.
Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Animales , Anticuerpos Antivirales/uso terapéutico , Antivirales/farmacología , Antivirales/uso terapéutico , Fiebre Chikungunya/tratamiento farmacológico , Fiebre Chikungunya/prevención & control , Virus ADN , Modelos Animales de Enfermedad , Ratones , RoedoresRESUMEN
Yellow fever virus (YFV) causes sporadic outbreaks of infection in South America and sub-Saharan Africa. While live-attenuated yellow fever virus vaccines based on three substrains of 17D are considered some of the most effective vaccines in use, problems with production and distribution have created large populations of unvaccinated, vulnerable individuals in areas of endemicity. To date, specific antiviral therapeutics have not been licensed for human use against YFV or any other related flavivirus. Recent advances in monoclonal antibody (mAb) technology have allowed the identification of numerous candidate therapeutics targeting highly pathogenic viruses, including many flaviviruses. Here, we sought to identify a highly neutralizing antibody targeting the YFV envelope (E) protein as a therapeutic candidate. We used human B cell hybridoma technology to isolate mAbs from circulating memory B cells from human YFV vaccine recipients. These antibodies bound to recombinant YFV E protein and recognized at least five major antigenic sites on E. Two mAbs (designated YFV-136 and YFV-121) recognized a shared antigenic site and neutralized the YFV-17D vaccine strain in vitro. YFV-136 also potently inhibited infection by multiple wild-type YFV strains, in part, at a postattachment step in the virus replication cycle. YFV-136 showed therapeutic protection in two animal models of YFV challenge, including hamsters and immunocompromised mice engrafted with human hepatocytes. These studies define features of the antigenic landscape of the YFV E protein recognized by the human B cell response and identify a therapeutic antibody candidate that inhibits infection and disease caused by highly virulent strains of YFV. IMPORTANCE Yellow fever virus (YFV) is a mosquito-borne virus that occasionally causes outbreaks of severe infection and disease in South America and sub-Saharan Africa. There are very effective live-attenuated (weakened) yellow fever virus vaccines, but recent problems with their production and distribution have left many people in affected areas vulnerable. Here, we sought to isolate an antibody targeting the surface of the virus for possible use in the future as a biologic drug to prevent or treat YFV infection. We isolated naturally occurring antibodies from individuals who had received a YFV vaccine. We created antibodies and tested them. We found that the antibody with the most powerful antiviral activity was a beneficial treatment in two different small-animal models of human infection. These studies identified features of the virus that are recognized by the human immune system and generated a therapeutic antibody candidate that inhibits infection caused by highly virulent strains of YFV.