Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Nano Lett ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38874568

RESUMEN

Blood-contacting medical devices (BCDs) require antithrombotic, antibacterial, and low-friction surfaces. Incorporating a nanostructured surface with the functional hydrogel onto BCD surfaces can enhance the performances; however, their fabrication remains challenging. Here, we introduce a straightforward method to fabricate a multifunctional hydrogel-based nanostructure on BCD surfaces using O-carboxymethyl chitosan-based short nanofibers (CMC-SNFs). CMC-SNFs, fabricated via electrospinning and cutting processes, are easily sprayed and entangled onto the BCD surface. The deposited CMC-SNFs form a robust nanoweb layer via fusion at the contact area of the nanofiber interfaces. The superhydrophilic CMC-SNF nanoweb surface creates a water-bound layer that effectively prevents the nonspecific adhesion of bacteria and blood cells, thereby enhancing both antimicrobial and antithrombotic performances. Furthermore, the CMC-SNF nanoweb exhibits excellent lubricity and durability on the bovine aorta. The demonstration results of the CMC-SNF coating on catheters and sheaths provide evidence of its capability to apply multifunctional surfaces simply for diverse BCDs.

2.
Nano Lett ; 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38917338

RESUMEN

Herein, we introduce a photobiocidal surface activated by white light. The photobiocidal surface was produced through thermocompressing a mixture of titanium dioxide (TiO2), ultra-high-molecular-weight polyethylene (UHMWPE), and reduced graphene oxide (rGO) powders. A photobiocidal activity was not observed on UHMWPE-TiO2. However, UHMWPE-TiO2@rGO exhibited potent photobiocidal activity (>3-log reduction) against Staphylococcus epidermidis and Escherichia coli bacteria after a 12 h exposure to white light. The activity was even more potent against the phage phi 6 virus, a SARS-CoV-2 surrogate, with a >5-log reduction after 6 h exposure to white light. Our mechanistic studies showed that the UHMWPE-TiO2@rGO was activated only by UV light, which accounts for 0.31% of the light emitted by the white LED lamp, producing reactive oxygen species that are lethal to microbes. This indicates that adding rGO to UHMWPE-TiO2 triggered intense photobiocidal activity even at shallow UV flux levels.

3.
Small ; 20(14): e2306324, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37990401

RESUMEN

Although the personal protective equipment (PPE) used by healthcare workers (HCWs) effectively blocks hazardous substances and pathogens, it does not fully rule out the possibility of infection, as pathogens surviving on the fabric surface pose a substantial risk of cross-infection through unintended means. Therefore, PPE materials that exhibit effective biocidal activity while minimizing contamination by viscous body fluids (e.g., blood and saliva) and pathogen-laden droplets are highly sought. In this study, petal-like nanostructures (PNSs) are synthesized through the vertical rearrangement of colloidal lamellar bilayers via evaporation-induced self-assembly of octadecylamine, silica-alumina sol, and diverse photosensitizer. The developed method is compatible with various fabrics and imparts visible-light-activated antimicrobial and superhydrophobic-based antifouling activities. PNS-coated fabrics could provide a high level of protection and effectively block pathogen transmission as exemplified by their ability to roll off viscous body fluids reducing bacterial droplet adhesion and to inactivate various microorganisms. The combination of antifouling and photobiocidal activities results in the complete inactivation of sprayed pathogen-laden droplets within 30 min. Thus, this study paves the way for effective contagious disease management and the protection of HCWs in general medical environments, inspiring further research on the fabrication of materials that integrate multiple useful functionalities.


Asunto(s)
Antiinfecciosos , Incrustaciones Biológicas , Humanos , Transmisión de Enfermedad Infecciosa de Paciente a Profesional/prevención & control , Equipo de Protección Personal , Personal de Salud , Antiinfecciosos/farmacología
4.
Environ Res ; 238(Pt 1): 117159, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722581

RESUMEN

This study evaluated the photobiocidal performance of four widely distributed visible-light-activated (VLA) dyes against two bacteria (Staphylococcus epidermidis and Escherichia coli) and two bacteriophages (phages MS2 and phi 6): rose bengal (RB), crystal violet, methylene blue, and toluidine blue O (TBO). The photobiocidal performance of each dye depended on the relationship between the type of dye and microorganism. Gram-negative E. coli and the non-enveloped structure of phage MS2 showed more resistance to the photobiocidal reaction than Gram-positive S. epidermidis and the enveloped structure of phage phi 6. RB had the highest potential to yield reactive oxygen species. However, the photobiocidal performance of RB was dependent on the magnitude of the surface charge of the microorganisms; for example, anionic RB induced a negative surface charge and thus electrical repulsion. On the other hand, the photobiocidal performance of TBO was observed to be less affected by the microorganism type. The comparative results presented in our study have significant implications for selecting photodynamic antimicrobial chemotherapy (PACT) dyes suitable for specific situations and purposes. Furthermore, they contribute to the advancement of PACT-related technologies by enhancing their applicability and scalability.


Asunto(s)
Antiinfecciosos , Cloruro de Tolonio , Cloruro de Tolonio/química , Cloruro de Tolonio/farmacología , Azul de Metileno/química , Rosa Bengala/química , Violeta de Genciana , Fármacos Fotosensibilizantes/química , Escherichia coli , Colorantes
5.
Chem Eng J ; 440: 135830, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35313452

RESUMEN

Outbreaks of airborne pathogens pose a major threat to public health. Here we present a single-step nanocoating process to endow commercial face mask filters with photobiocidal activity, triboelectric filtration capability, and washability. These functions were successfully achieved with a composite nanolayer of silica-alumina (Si-Al) sol-gel, crystal violet (CV) photosensitizer, and hydrophobic electronegative molecules of 1H, 1H, 2H, 2H-perfluorooctyltriethoxysilane (PFOTES). The transparent Si-Al matrix strongly immobilized the photosensitizer molecules while dispersing them spatially, thus suppressing self-quenching. During nanolayer formation, PFOTES was anisotropically rearranged on the Si-Al matrix, promoting moisture resistance and triboelectric charging of the Si-Al/PFOTES-CV (SAPC)-coated filter. The SAPC nanolayer stabilized the photoexcited state of the photosensitizer and promoted redox reaction. Compared to pure-photosensitizer-coated filters, the SAPC filter showed substantially higher photobiocidal efficiency (∼99.99 % for bacteria and a virus) and photodurability (∼83 % reduction in bactericidal efficiency for the pure-photosensitizer filter but ∼0.34 % for the SAPC filter after 72 h of light irradiation). Moreover, after five washes with detergent, the SAPC filter maintained its photobiocidal and filtration performance, proving its reusability potential. Therefore, this SAPC nanolayer coating provides a practical strategy for manufacturing an antimicrobial and reusable mask filter for use during the ongoing COVID-19 pandemic.

6.
Nano Lett ; 21(2): 1017-1024, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33444028

RESUMEN

Bioaerosols, including infectious diseases such as COVID-19, are a continuous threat to global public safety. Despite their importance, the development of a practical, real-time means of monitoring bioaerosols has remained elusive. Here, we present a novel, simple, and highly efficient means of obtaining enriched bioaerosol samples. Aerosols are collected into a thin and stable liquid film by the unique interaction of a superhydrophilic surface and a continuous two-phase centrifugal flow. We demonstrate that this method can provide a concentration enhancement ratio of ∼2.4 × 106 with a collection efficiency of ∼99.9% and an aerosol-into-liquid transfer rate of ∼95.9% at 500 nm particle size (smaller than a single bacterium). This transfer is effective in both laboratory and external ambient environments. The system has a low limit of detection of <50 CFU/m3air using a straightforward bioluminescence-based technique and shows significant potential for air monitoring in occupational and public-health applications.


Asunto(s)
Aerosoles , Bacterias/aislamiento & purificación , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Microbiología del Aire , Biomasa , Límite de Detección , Luminiscencia , Nanopartículas , Tamaño de la Partícula , Salud Pública , Propiedades de Superficie , Temperatura
7.
Nano Lett ; 21(4): 1576-1583, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33275432

RESUMEN

Recently, bioaerosols, including the 2019 novel coronavirus, pose a serious threat to global public health. Herein, we introduce a visible-light-activated (VLA) antimicrobial air filter functionalized with titanium dioxide (TiO2)-crystal violet (CV) nanocomposites facilitating abandoned visible light from sunlight or indoor lights. The TiO2-CV based VLA antimicrobial air filters exhibit a potent inactivation rate of ∼99.98% and filtration efficiency of ∼99.9% against various bioaerosols. Under visible-light, the CV is involved in overall inactivation by inducing reactive oxygen species production both directly (CV itself) and indirectly (in combination with TiO2). Moreover, the susceptibility of the CV to humidity was significantly improved by forming a hydrophobic molecular layer on the TiO2 surface, highlighting its potential applicability in real environments such as exhaled or humid air. We believe this work can open a new avenue for designing and realizing practical antimicrobial technology using ubiquitous visible-light energy against the threat of infectious bioaerosols.


Asunto(s)
Microbiología del Aire , Antiinfecciosos Locales/química , Desinfección/métodos , Violeta de Genciana/química , Nanocompuestos/química , Titanio/química , Antiinfecciosos Locales/farmacología , Bacterias/efectos de los fármacos , Bacterias/efectos de la radiación , Infecciones Bacterianas/prevención & control , COVID-19/prevención & control , Desinfección/instrumentación , Filtración/instrumentación , Filtración/métodos , Violeta de Genciana/farmacología , Humanos , Luz , Nanocompuestos/ultraestructura , Titanio/farmacología , Agua/química
8.
Indoor Air ; 31(4): 1134-1143, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33682971

RESUMEN

After the WHO designated COVID-19 a global pandemic, face masks have become a precious commodity worldwide. However, uncertainty remains around several details regarding face masks, including the potential for transmission of bioaerosols depending on the type of mask and secondary spread by face masks. Thus, understanding the interplay between face mask structure and harmful bioaerosols is essential for protecting public health. Here, we evaluated the microbial survival rate at each layer of commercial of filtering facepiece respirators (FFRs) and surgical masks (SMs) using bacterial bioaerosols. The penetration efficiency of bacterial particles for FFRs was lower than that for SMs; however, the microbial survival rate for all tested masks was >13%, regardless of filtration performance. Most bacterial particles survived in the filter layer (44%-77%) (e.g., the core filtering layer); the outer layer also exhibited significant survival rates (18%-29%). Most notably, survival rates were determined for the inner layers (<1% for FFRs, 3%-16% for SMs), which are in contact with the respiratory tract. Our comparisons of the permeability and survival rate of bioaerosols in each layer will contribute to bioaerosol-face mask research, while also providing information to facilitate the establishment of a mask-reuse protocol.


Asunto(s)
Máscaras/estadística & datos numéricos , Aerosoles , Microbiología del Aire , COVID-19 , Filtración , Humanos , Staphylococcus epidermidis
9.
J Environ Sci (China) ; 103: 148-156, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33743897

RESUMEN

Indoor air quality (IAQ) directly affects the health of occupants. Household manufacturing equipment (HME) used for hobbies or educational purposes is a new and unexplored source of air pollution. In this study, we evaluated the characteristics of particulate and gaseous pollutants produced by a household laser processing equipment (HLPE). Various target materials were tested using a commercial HLPE under various operating conditions of laser power and sheath air flow rate. The mode diameters of the emitted particles gradually decreased as laser power increased, while the particle number concentration (PNC) and particle emission rate (PER) increased. In addition, as the sheath air flow rate quadrupled from 10 to 40 L/min, the mode diameter of the emitted particles decreased by nearly 25%, but the effect on the PNC was insignificant. When the laser induced the target materials at 53 mW, the mode diameters of particles were <150 nm, and PNCs were >2.0 × 104 particles/cm3. Particularly, analyses of sampled aerosols indicated that harmful substances such as sulfur and barium were present in particles emitted from leather. The carcinogenic gaseous pollutants such as acrylonitrile, acetaldehyde, 1,3-butadiene, benzene, and C8 aromatics (ethylbenzene) were emitted from all target materials. In an actual indoor environment, the PNC of inhalable ultrafine particles (UFPs) was >5 × 104 particles/cm3 during 30 min of HLPE operation. Our results suggest that more meticulous control methods are needed, including the use of less harmful target materials along with filters or adsorbents that prevent emission of pollutants.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Ambientales , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Monitoreo del Ambiente , Gases , Rayos Láser , Tamaño de la Partícula , Material Particulado/análisis
10.
Sens Actuators B Chem ; 284: 525-533, 2019 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-32288254

RESUMEN

We present a novel bioaerosol sampling system based on a wet-cyclone for real-time and continuous monitoring of airborne microorganisms. The Automated and Real-time Bioaerosol Sampler based on Wet-cyclone (ARBSW) continuously collects bioaerosols in a liquid medium and delivers the samples to a sensing device using a wireless remote control system. Based on a high air-to-liquid-flow-rate ratio (∼ 1.4 × 105) and a stable liquid thin film within a wet-cyclone, the system achieved excellent sampling performance as indicated by the high concentration and viability of bioaerosols (> 95% collection efficiency for > 0.5-µm-diameter particles, > 95% biological collection efficiency for Staphylococcus epidermidis and Micrococcus luteus). Furthermore, the continuous and real-time sampling performance of the ARBSW system under test-bed conditions and during a field test demonstrated that the ARBSW is capable of continuously monitoring bioaerosols in real time with high sensitivity. Therefore, the ARBSW shows promise for continuous real-time monitoring of bioaerosols and will facilitate the management of bioaerosol-related health and environmental issues.

11.
Environ Sci Technol ; 51(20): 11967-11975, 2017 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-28945076

RESUMEN

Filtration technology has been widely studied due to concerns about exposure to airborne dust, including metal oxide nanoparticles, which cause serious health problems. The aim of these studies has been to develop mechanisms for the continuous and efficient removal of metal oxide dusts. In this study, we introduce a novel air filtration system based on the magnetic attraction force. The filtration system is composed of a magnetic nanoparticle (MNP)-decorated nanofiber (MNP-NF) filter. Using a simple electrospinning system, we fabricated continuous and smooth electrospun nanofibers with evenly distributed Fe3O4 MNPs. Our electrospun MNP-NF filter exhibited high particle collection efficiency (∼97% at 300 nm particle size) compared to the control filter (w/o MNPs, ∼ 68%), with a ∼ 64% lower pressure drop (∼17 Pa) than the control filter (∼27 Pa). Finally, the filter quality factors of the MNP-NF filter were 4.7 and 11.9 times larger than those of the control filter and the conventional high-efficiency particulate air filters (>99% and ∼269 Pa), respectively. Furthermore, we successfully performed a field test of our MNP-NF filter using dust from a subway station tunnel. This work suggests that our novel MNP-NF filter can be used to facilitate effective protection against hazardous metal oxide dust in real environments.


Asunto(s)
Filtros de Aire , Nanopartículas de Magnetita , Filtración , Nanofibras , Tamaño de la Partícula
12.
J Nanosci Nanotechnol ; 16(5): 4487-92, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-27483779

RESUMEN

Health-care products are a dominant application of various nanotechnologies. Silver nanoparticles are widely used in commercial products requiring antimicrobial activity. Due to the limitations of wet processing in nanotechnology applications, dry aerosol processes have been developed for indoor antimicrobial air filtration. In this work, various aerosol processes for the synthesis or generation of nanomaterials, natural-product nanoparticles, and hybrid nanoparticles are reviewed. Key aerosol processes and the morphologies of various antimicrobial nanoparticles generated using a variety of systems or deposited on filter fibers are introduced.


Asunto(s)
Aerosoles/química , Antiinfecciosos/administración & dosificación , Antiinfecciosos/síntesis química , Nanopartículas del Metal/química , Plata/química , Staphylococcus aureus/efectos de los fármacos , Aire Acondicionado/métodos , Microbiología del Aire , Supervivencia Celular/efectos de los fármacos , Cristalización/métodos , Ensayo de Materiales , Nanopartículas del Metal/administración & dosificación , Nanopartículas del Metal/ultraestructura , Tamaño de la Partícula , Plata/administración & dosificación , Staphylococcus aureus/fisiología , Ultrafiltración/métodos
13.
J Aerosol Sci ; 86: 44-54, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32226126

RESUMEN

Controlling airborne microorganisms has become increasingly important with increase in human indoor activities, epidemic disease outbreaks, and airborne pathogen transmission. Treatments using antimicrobial nanoparticles have shown promise because of the high surface-to-volume ratio of nanoparticles compared to their bulk counterparts, and their unique physical and chemical properties. In this study, hybrid nanostructures of multi-walled carbon nanotubes (MWCNTs) coated with antimicrobial, natural product (NP) nanoparticles were synthesized using a twin-head electrospray system (THES). The coated nanoparticles were then used in antimicrobial air filters to increase their antimicrobial efficiency. Electrosprayed droplets were converted to NP nanoparticles and MWCNTs through ethanol evaporation. Oppositely charged NP nanoparticles and MWCNTs were coagulated via Coulombic collisions to form hybrid nanoparticles that were deposited continuously onto an air filter medium. The size distribution and composition of the hybrid NP/MWCNT particles were characterized using a wide-range particle spectrometer (WPS) and transmission electron microscope (TEM). The concentration of hybrid NP/MWCNT nanoparticles was lower than that of NP nanoparticles but higher than that of MWCNTs and showed a bimodal size distribution with peak diameters of 21.1 and 49 nm. TEM analyses confirmed that the NP nanoparticles were attached to the MWCNT surface with a density of ~4-9 particles/MWCNT. When deposited onto the filter medium, NP/MWCNT particles formed dendrites on the filter׳s fiber surface. The filtration efficiency and pressure drop of the NP/MWCNT-coated filters were higher than those of pristine, NP nanoparticles-coated or MWCNTs-coated filters. The hybrid filter also exhibited stronger antimicrobial activity than those of NP or MWCNT-coated filters at identical deposited volumes (1.1×10-2 cm3/cm2 filter). Ninety-five percent of the tested bacterial aerosols were inactivated on the NP/MWCNTs filter while only <70% were inactivated on NP- or MWCNT-coated filters.

14.
J Nanosci Nanotechnol ; 13(9): 6042-51, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24205596

RESUMEN

Cu(In,Ga)Se2 (CIGS) is a compound semiconductor and is one of the most attractive light-absorbing materials for use in thin film solar cells. Among the various approaches to prepare CIGS thin films, the powder process offers an extremely simple and materials-efficient method. Here, we report the mechano-chemical preparation of CIGS compound powders suitable for fabrication of CIGS films by a powder process. We found that the CIGS phase was formed from the elemental powders of Cu, In, and Se and liquid Ga using high energy milling process with a milling time as short as 40 min at 200 rpm due to a self-accelerating exothermic reaction. The morphology and size of the CIGS powders changed with a function of the milling speed (100-300 rpm), leading to an optimal condition of milling at 200 rpm for 120 min. We also found that it was difficult to obtain a monolithic phase of the CIGS powders without severe particle aggregation by mechano-chemical milling alone. Therefore, in combination with the milling, subsequent heat-treatment at 300 degrees C was performed, which successfully provided monolithic CIGS nanopowders suitable for powder process. When a thin film was fabricated from the monolithic CIGS nanopowders, a highly dense film with large crystalline grains was obtained. The CIGS film preserved its chemical composition of CuIn0.7Ga0.3Se2 after sintering as evidenced by Raman spectroscopy, EDS and SAED pattern of transmission electron microscopy. The film was also found suitable for a light absorbing layer of CIGS solar cells with its band gap energy of 1.14 eV evaluated by transmittance spectroscopy.

15.
Environ Technol Innov ; 30: 103124, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36987524

RESUMEN

The global spread of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has reminded us of the importance of developing technologies to reduce and control bioaerosols in built environments. For bioaerosol control, the interaction between researchers and biomaterials is essential, and considering the characteristics of target pathogens is strongly required. Herein, we used enveloped viral aerosols, bacteriophage phi 6, for evaluating the performance of an electrostatic precipitator (ESP) with a copper-collecting plate (Cu-plate). In particular, bacteriophage phi 6 is an accessible enveloped virus that can be operated in biosafety level (BSL)-1 as a promising surrogate for SARS-CoV-2 with structural and morphological similarities. ESP with Cu-plate showed >91% of particle removal efficiency for viral aerosols at 77 cm/s of airflow face velocity. Moreover, the Cu-plate presented a potent antiviral performance of 5.4-relative log reduction within <15 min of contact. We believe that the evaluation of ESP performance using an aerosolized enveloped virus and plaque assay is invaluable. Our results provide essential information for the development of bioaerosol control technologies that will lead the post-corona era.

16.
Sci Total Environ ; 807(Pt 1): 150754, 2022 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-34619223

RESUMEN

The role of air filters is becoming increasingly important due to the threat of air pollution to public health. Understanding the lifetime of air filters is essential for assessing air pollution exposure. However, the effects of common environmental chemicals on filter performance have not been explored. Air filters in ventilation systems and air purifiers are commonly exposed to cigarette smoke aerosols. Moreover, due to the coronavirus pandemic, people are more likely to be in close proximity with smokers while wearing face masks, such that their masks will be exposed to cigarette aerosols. In this study, we applied a stepwise approach to analyze the effects of cigarette smoke on the filtration performance of electret melt-blown filter media that are commonly used to create face masks. We found that cigarette aerosols dramatically reduced filtration efficiency, while standard test particles of a similar loading weight did not affect filtration efficiency. After loading up to 204 µg/cm2 of cigarette smoke on 100 cm2 of electret filter medium, the filtration efficiency of some filters decreased from 92.5% to 33.3% (-Δ59.2%). Interestingly, we founded no changes in pressure drop following cigarette smoke exposure despite the reduction in filtration efficiency, suggesting that cigarette smoke aerosols significantly impact the electrostatic charge properties of the filters. Our results indicate that the lifetime of commonly-used air filters may be much shorter than expected and that people may unknowingly be directly exposed to airborne pollutants.


Asunto(s)
Filtros de Aire , Aire Acondicionado , Filtración , Humanos , Humo/efectos adversos , Fumar
17.
Sci Total Environ ; 818: 151830, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-34813805

RESUMEN

Air pollution causes millions of deaths every year. The aerosols, especially airborne nanoparticles generated by combustion, have detrimental effect on health. To protect public health against harmful aerosols, efforts to develop effective air cleaning technology have continued over the past several decades. However, the aerosol generation method used in air cleaning performance tests still rely largely on the traditional methods such as burning cigarettes, paper, and incense. Since the traditional method is inaccurate and unsteady, a more precisely controlled aerosol generation method should be developed. Here, we present a simple and inexpensive aerosol generation method that can easily and consistently produce submicron aerosols through laser ablation. This device constitutes an integrated system with a high-quality mini laser for rapid aerosol generation and a two-axis moving stage for continuous aerosol generation. We demonstrate that the concentration of generated aerosols could be easily controlled by selecting the laser irradiation time and power, resulting in the generation of ~104 particles/cm3 within a few seconds. In addition, the shape and size of generated aerosols can be controlled by changing the target material. This submicron aerosol generation process can be stably maintained for up to 1 h using small-sized (3 cm × 8 cm) affordable and accessible materials, such as wood and leather, highlighting the advantages of this inexpensive and easy-to-use combustion airborne submicron particle generation method.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Rayos Láser , Tamaño de la Partícula , Material Particulado/análisis
18.
ACS Appl Mater Interfaces ; 14(47): 53285-53297, 2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36395463

RESUMEN

Healthcare-associated infections can occur and spread through direct contact with contaminated fomites in a hospital, such as mobile phones, tablets, computer keyboards, doorknobs, and other surfaces. Herein, this study shows a transparent, robust, and visible light-activated antibacterial surface based on hydrogen bonds between a transparent silica-alumina (Si-Al) sol-gel and a visible light-activated photosensitizer, such as crystal violet (CV). The study of the bonding mechanisms revealed that hydrogen bonding predominantly occurs between the N of CV and Al-OH. Apart from CV, Si-Al can be combined with a variety of dyes, highlighting its potential for wide application. The Si-Al@CV film selectively generates singlet oxygen using ambient visible light, triggering potent photochemical antibacterial performance against Gram-positive and Gram-negative bacteria. Additionally, the Si-Al@CV film is stable even after mechanical stability tests such as tape adhesion, scratch, bending, and water immersion. In vitro cytotoxicity tests using C2C12 myoblast cells showed that the Si-Al@CV film is a biocompatible material. This work suggests a new approach for designing a transparent and robust touchscreen surface with photochemical antibacterial capability against healthcare-associated infections.


Asunto(s)
Óxido de Aluminio , Infección Hospitalaria , Humanos , Dióxido de Silicio/farmacología , Enlace de Hidrógeno , Colorantes , Antibacterianos/farmacología , Bacterias Gramnegativas , Bacterias Grampositivas , Cationes , Violeta de Genciana/farmacología , Gel de Sílice
19.
Langmuir ; 27(16): 10256-64, 2011 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-21751779

RESUMEN

Carbon nanotubes (CNTs) have been widely used in a variety of applications because of their unique structure and excellent mechanical and electrical properties. Additionally, silver (Ag) nanoparticles exhibit broad-spectrum biocidal activity toward many different bacteria, fungi, and viruses. In this study, we prepared Ag-coated CNT hybrid nanoparticles (Ag/CNTs) using aerosol nebulization and thermal evaporation/condensation processes and tested their usefulness for antimicrobial air filtration. Droplets were generated from a CNT suspension using a six-jet collison nebulizer, passed through a diffusion dryer to remove moisture, and entered a thermal tube furnace where silver nanoparticles were generated by thermal evaporation/condensation at ∼980 °C in a nitrogen atmosphere. The CNT and Ag nanoparticle aerosols mixed together and attached to each other, forming Ag/CNTs. For physicochemical characterization, the Ag/CNTs were introduced into a scanning mobility particle sizer (SMPS) for size distribution measurements and were sampled by the nanoparticle sampler for morphological and elemental analyses. For antimicrobial air filtration applications, the airborne Ag/CNT particles generated were deposited continuously onto an air filter medium. Physical characteristics (fiber morphology, pressure drop, and filtration efficiency) and biological characteristics (antimicrobial tests against Staphylococcus epidermidis and Escherichia coli bioaerosols) were evaluated. Real-time SMPS and transmission electron microscopy (TEM) data showed that Ag nanoparticles that were <20 nm in diameter were homogeneously dispersed and adhered strongly to the CNT surfaces. Because of the attachment of Ag nanoparticles onto the CNT surfaces, the total particle surface area concentration measured by a nanoparticle surface area monitor (NSAM) was lower than the summation of each Ag nanoparticle and CNT generated. When Ag/CNTs were deposited on the surface of an air filter medium, the antimicrobial activity against test bacterial bioaerosols was enhanced, compared with the deposition of CNTs or Ag nanoparticles alone, whereas the filter pressure drop and bioaerosol filtration efficiency were similar to those of CNT deposition only. At a residence time of 2 h, the relative microbial viabilities of gram-positive S. epidermidis were ∼32, 13, 5, and 0.9% on the control, CNT-, Ag nanoparticle-, and Ag/CNT-deposited filters, respectively, and those of gram-negative E. coli were 13, 2.1, 0.4, and 0.1% on the control, CNTs, Ag nanoparticles, and Ag/CNTs, respectively. These Ag/CNT hybrid nanoparticles may be useful for applications in biomedical devices and antibacterial control systems.


Asunto(s)
Aerosoles/química , Antiinfecciosos/química , Filtración/métodos , Nanopartículas del Metal/química , Nanotubos de Carbono/química , Plata/química , Antiinfecciosos/farmacología , Escherichia coli/efectos de los fármacos , Nanopartículas del Metal/ultraestructura , Microscopía Electrónica de Transmisión , Nanotubos de Carbono/ultraestructura , Staphylococcus epidermidis/efectos de los fármacos
20.
Sci Total Environ ; 783: 147043, 2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34088110

RESUMEN

Reducing PM emissions from industrial sites has become increasingly important as the adverse health effects of particulate matter have been demonstrated by multiple epidemiological and toxicological studies. High-performance bag filters are often used for this purpose. We fabricated polytetrafluoroethylene (PTFE) nanoparticle (NP)-coated high-efficiency bag filters using air-assisted electrospraying (AAES) technology. AAES functionalized with a combination of airflow drag force and an applied electric field facilitates high-throughput without requiring additional purification or preparation process of a PTFE emulsion. PTFE NPs form a unique three-dimensional microporous structure on a foam-filter medium, enhancing mechanical filtration performance (diffusion and interception). Moreover, the surface hydrophobicity was significantly improved as the PTFE NPs covered the bag filter surface. These factors highlight the feasibility of large-scale implementation of PTFE NP-coated bag filters for reducing PM emissions from industrial sources.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA