Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
FASEB J ; 37(1): e22706, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36520042

RESUMEN

Primordial germ cells (PGCs) have been used in avian genetic resource conservation and transgenic animal production. Despite their potential applications to numerous avian taxa facing extinction due to habitat loss and degradation, research has largely focused on poultry, such as chickens, in part owing to the difficulty in obtaining intact PGCs from other species. Recently, phenotypic differences between PGCs of chicken and zebra finch, a wild bird with vocal learning, in early embryonic development have been reported. In this study, we used advanced single-cell RNA sequencing (scRNA-seq) technology to evaluate zebra finch and chicken PGCs and surrounding cells, and to identify species-specific characteristics. We constructed single-cell transcriptome landscapes of chicken gonadal PGCs for a comparison with previously reported scRNA-seq data for zebra finch. We identified interspecific differences in several signaling pathways in gonadal PGCs and somatic cells. In particular, NODAL and insulin signaling pathway activity levels were higher in zebra finch than in chickens, whereas activity levels of the downstream FGF signaling pathway, involved in the proliferation of chicken PGCs, were higher in chickens. This study is the first cross-species single-cell transcriptomic analysis targeting birds, revealing differences in germ cell development between phylogenetically distant Galliformes and Passeriformes. Our results provide a basis for understanding the reproductive physiology of avian germ cells and for utilizing PGCs in the restoration of endangered birds and the production of transgenic birds.


Asunto(s)
Pollos , Pinzones , Animales , Pollos/genética , Pinzones/genética , Transcriptoma , Células Germinativas , Transducción de Señal
2.
Biol Reprod ; 108(2): 316-323, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36383400

RESUMEN

Zebra finch is a unique model for behavioral, neural, and genomic studies of vocal learning. Several transgenic zebra finches have been produced, although the germline transmission efficiencies are reportedly low. Recently, there have been attempts to produce germline chimeras using primordial germ cells (PGCs). However, this has been hampered by difficulties associated with the manipulation of the small eggs and the fact that the zebra finch is an altricial species that requires parental care after birth, unlike precocial chickens. Consequently, it is difficult to transplant PGCs into embryos and maintain the chimeras. Here, we developed a busulfan-mediated system for transplantation of PGCs into adult testes, to produce germline chimeras with an improved germline transmission capacity. We established microsomal glutathione-S-transferase II (MGSTII)-overexpressing PGCs that are resistant to busulfan, which induces germ cell-specific cytotoxicity, and transplanted them into testes rendered temporarily infertile by busulfan. The recipients were given a second dose of busulfan to deplete endogenous germ cells and enrich the transplanted cells, and donor cell-derived spermatogenesis was accomplished. This method requires fewer recipients due to higher survival rates, and there is no need to wait for maturation of the founders, which is required when transplanting PGCs into embryos. These results are expected to improve transgenic zebra finch production.


Asunto(s)
Pollos , Pájaros Cantores , Masculino , Animales , Pollos/genética , Testículo , Busulfano/farmacología , Células Germinativas/trasplante , Animales Modificados Genéticamente
3.
BMC Biotechnol ; 22(1): 25, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36056347

RESUMEN

BACKGROUND: The chicken in ovo model is an attractive system to explore underlying mechanisms of neural and brain development, and it is important to develop effective genetic modification techniques that permit analyses of gene functions in vivo. Although electroporation and viral vector-mediated gene delivery techniques have been used to introduce exogenous DNA into chicken embryonic cells, transducing neurons efficiently and specifically remains challenging. METHODS: In the present study, we performed a comparative study of the ubiquitous CMV promoter and three neuron-specific promoters, chicken Ca2+/calmodulin-dependent kinase (cCaMKII), chicken Nestin (cNestin), and human synapsin I. We explored the possibility of manipulating gene expression in chicken embryonic brain cells using in ovo electroporation with the selected promoters. RESULTS: Transgene expression by two neuron-specific promoters (cCaMKII and cNestin) was preliminarily verified in vitro in cultured brain cells, and in vivo, expression levels of an EGFP transgene in brain cells by neuron-specific promoters were comparable to or higher than those of the ubiquitous CMV promoter. Overexpression of the FOXP2 gene driven by the cNestin promoter in brain cells significantly affected expression levels of target genes, CNTNAP2 and ELAVL4. CONCLUSION: We demonstrated that exogenous DNA can be effectively introduced into neuronal cells in living embryos by in ovo electroporation with constructs containing neuron-specific promoters. In ovo electroporation offers an easier and more efficient way to manipulate gene expression during embryonic development, and this technique will be useful for neuron-targeted transgene expression.


Asunto(s)
Pollos , Infecciones por Citomegalovirus , Animales , Encéfalo , Embrión de Pollo , Pollos/genética , Electroporación/métodos , Humanos , Neuronas
4.
FASEB J ; 35(9): e21876, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34449112

RESUMEN

Compared with the well-described XY sex determination system in mammals, the avian ZW sex determination system is poorly understood. Knockdown and overexpression studies identified doublesex and mab-3-related transcription factor 1 (DMRT1) as the testis-determining gene in chicken. However, the detailed effects of DMRT1 gene disruption from embryonic to adult development are not clear. Herein, we have generated DMRT1-disrupted chickens using the clustered regularly interspaced short palindromic repeats-associated protein 9 system, followed by an analysis of physiological, hormonal, and molecular changes in the genome-modified chickens. In the early stages of male chicken development, disruption of DMRT1 induced gonad feminization with extensive physiological and molecular changes; however, functional feminine reproductivity could not be implemented with disturbed hormone synthesis. Subsequent RNA-sequencing analysis of the DMRT1-disrupted chicken gonads revealed gene networks, including several novel genes linearly and non-linearly associated with DMRT1, which are involved in gonad feminization. By comparing the gonads of wild type with the genome-modified chickens, a set of genes were identified that is involved in the ZW sex determination system independent of DMRT1. Our results extend beyond the Z-dosage hypothesis to provide further information about the avian ZW sex determination system and epigenetic effects of gonad feminization.


Asunto(s)
Pollos/genética , Feminización/genética , Gónadas/fisiología , Factores de Transcripción/genética , Animales , Femenino , Regulación del Desarrollo de la Expresión Génica/genética , Redes Reguladoras de Genes/genética , Masculino , Ovario/fisiología , Cromosomas Sexuales , Testículo/fisiología
5.
Front Zool ; 19(1): 18, 2022 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-35690812

RESUMEN

BACKGROUND: Due to their cost effectiveness, ease of use, and unlimited supply, immortalized cell lines are used in place of primary cells for a wide range of research purposes, including gene function studies, CRISPR-based gene editing, drug metabolism tests, and vaccine or therapeutic protein production. Although immortalized cell lines have been established for a range of animal species, there is still a need to develop such cell lines for wild species. The zebra finch, which is used widely as a model species to study the neurobiological basis of human speech disorders, has been employed in several functional studies involving gene knockdown or the introduction of exogenous transgenes in vivo; however, the lack of an immortalized zebra finch cell line has hampered precise genome editing studies. RESULTS: Here, we established an immortalized cell line by a single genetic event, expression of the c-MYC oncogene, in zebra finch embryonic fibroblasts and examined its potential suitability for gene targeting investigations. Retroviral vector-mediated transduction of c-MYC was used to immortalize zebra finch primary fibroblasts; the transformed cells proliferated stably over several passages, resulting in the expression of chondrocyte-specific genes. The transfection efficiency of the immortalized cells was much higher than that of the primary cells. Targeted knockout of the SOX9 gene, which plays a role in the differentiation of mesenchymal progenitor cells into chondrocytes, was conducted in vitro and both apoptosis and decreased expression levels of chondrogenic marker genes were observed in edited cells. CONCLUSIONS: The c-MYC induced immortalized chondrocyte-like cell line described here broadens the available options for establishing zebra finch cell lines, paves the way for in-depth biological researches, and provides convenient approaches for biotechnology studies, particularly genomic modification research.

6.
FASEB J ; 34(12): 15907-15921, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33031594

RESUMEN

Base editing technology enables the generation of precisely genome-modified animal models. In this study, we applied base editing to chicken, an important livestock animal in the fields of agriculture, nutrition, and research through primordial germ cell (PGC)-mediated germline transmission. Using this approach, we successfully produced two genome-modified chicken lines harboring mutations in the genes encoding ovotransferrin (TF) and myostatin (MSTN); however, only 55.5% and 35.7% of genome-modified chickens had the desired base substitutions in TF and MSTN, respectively. To explain the low base-editing activity, we performed molecular analysis to compare DNA repair pathways between PGCs and the chicken fibroblast cell line DF-1. The results revealed that base excision repair (BER)-related genes were significantly elevated in PGCs relative to DF-1 cells. Subsequent functional studies confirmed that the editing activity could be regulated by modulating the expression of uracil N-glycosylase (UNG), an upstream gene of the BER pathway. Collectively, our findings indicate that the distinct DNA repair property of chicken PGCs causes low editing activity during genome modification, however, modulation of BER functions could promote the production of genome-modified organisms with the desired genotypes.


Asunto(s)
Pollos/genética , Reparación del ADN/genética , Células Germinativas/fisiología , Secuencia de Aminoácidos , Animales , Animales Modificados Genéticamente/genética , Secuencia de Bases , Línea Celular , Conalbúmina/genética , Fibroblastos/fisiología , Edición Génica/métodos , Genoma/genética , Miostatina/genética , Transducción de Señal/genética , Uracil-ADN Glicosidasa/genética
7.
FASEB J ; 33(12): 13825-13836, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31604057

RESUMEN

The zebra finch has been used as a valuable vocal learning animal model for human spoken language. It is representative of vocal learning songbirds specifically, which comprise half of all bird species, and of Neoaves broadly, which comprise 95% of all bird species. Although transgenesis in the zebra finch has been accomplished, it is with a very low efficiency of germ-line transmission and far from the efficiency with a more genetically tractable but vocal nonlearning species, the chicken (a Galloanseriformes). To improve germ-line transmission in the zebra finch, we identified and characterized its primordial germ cells (PGCs) and compared them with chicken. We found striking differences between the 2 species, including that zebra finch PGCs were more numerous, more widely distributed in early embryos before colonization into the gonads, had slower timing of colonization, and had a different developmental gene-expression program. We improved conditions for isolating and culturing zebra finch PGCs in vitro and were able to transfect them with gene-expression vectors and incorporate them into the gonads of host embryos. Our findings demonstrate important differences in the PGCs of the zebra finch and advance the first stage of creating PGC-mediated germ-line transgenics of a vocal learning species.-Jung, K. M., Kim, Y. M., Keyte, A. L., Biegler, M. T., Rengaraj, D., Lee, H. J., Mello, C. V., Velho, T. A. F., Fedrigo, O., Haase, B., Jarvis, E. D., Han, J. Y. Identification and characterization of primordial germ cells in a vocal learning Neoaves species, the zebra finch.


Asunto(s)
Pinzones/fisiología , Células Germinativas/fisiología , Aprendizaje/fisiología , Animales , Modelos Animales de Enfermedad , Embrión no Mamífero/fisiología , Femenino , Expresión Génica/fisiología , Masculino
8.
FASEB J ; 33(7): 8519-8529, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30951374

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein 9 (Cas9) have facilitated the production of genome-edited animals for use as models. Because of their unique developmental system, avian species offer many advantages as model vertebrates. Here, we report the development of novel chicken models using the CRISPR/Cas9-mediated nonhomologous end joining repair pathway in chicken primordial germ cells (PGCs). Through the introduction of a donor plasmid containing short guide RNA recognition sequences and CRISPR/Cas9 plasmids into chicken PGCs, exogenous genes of donor plasmids were precisely inserted into target loci, and production of transgenic chickens was accomplished through subsequent transplantation of the Z chromosome-targeted PGCs. Using this method, we successfully accomplished the targeted gene insertion to the chicken sex Z chromosome without detected off-target effects. The genome-modified chickens robustly expressed green fluorescent protein from the Z chromosome, which could then be used for easy sex identification during embryogenesis. Our results suggest that this powerful genome-editing method could be used to develop many chicken models and should significantly expand the application of genome-modified avians.-Lee, H. J., Yoon, J. W., Jung, K. M., Kim, Y. M., Park, J. S., Lee, K. Y., Park, K. J., Hwang, Y. S., Park, Y. H., Rengaraj, D., Han, J. Y. Targeted gene insertion into Z chromosome of chicken primordial germ cells for avian sexing model development.


Asunto(s)
Pollos/genética , Células Germinativas/fisiología , Cromosomas Sexuales/genética , Animales , Animales Modificados Genéticamente/genética , Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Genoma/genética , Proteínas Fluorescentes Verdes/genética , Mutagénesis Insercional/métodos , ARN Guía de Kinetoplastida/genética
9.
Asian-Australas J Anim Sci ; 31(8): 1160-1168, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29268590

RESUMEN

OBJECTIVE: This study was conducted to compare morphological defects, viability, motility (MOT), fertility (F), and hatchability (H) in four Korean native chicken breeds (KNCBs), and to evaluate whether defective segments of spermatozoa are associated with MOT, F, and H. METHODS: Four KNCBs, including Korean Ogye (KO), Hwangbong (HB), Hyunin Black (HH), and Hoengseong Yakdak (HY) were used. White Leghorn (WL) was used as a control. Nine cocks from each breed were randomly assigned into three groups. Semen was collected by abdominal massage method. Eosin-nigrosin staining method was used to identify live-dead spermatozoa. Different segments and specific morphological defects of spermatozoa were identified using 4', 6-diamidino-2-phenylidole and MitoTracker Red CMXRos. F and H rates were evaluated following artificial insemination (AI). RESULTS: KO had the highest MOT rate compared to HY. Viable normal sperm rates of KO and HH were high and comparable with WL. HY spermatozoa had the highest viable abnormal sperm (VAS) or morphological defect rate followed by HB. Likewise, HB spermatozoa had the highest dead sperm (dead) rate compared to KO, HY, and WL. Bent, coiled, detached, broken, and knotted were common identified specific morphological defects for all breeds. Most morphological defects were at the head and tail in all breeds. VAS showed strong negative correlation with MOT (r = -0.697) and F (r = -0.609). Similarly, defective tail was negatively correlated with MOT (r = -0.587), F (r = -0.797), and H (r = -0.448). The F and H rates of KO and WL were comparable. CONCLUSION: These data indicate that most identified specific morphological defects are at the head and tail. VAS and defective tail were associated with poor motility, F, and H. KNCBs showed more morphological defects than WL. Finally, these results will facilitate successful AI and semen cryopreservation.

10.
Poult Sci ; 103(6): 103723, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38652946

RESUMEN

The utilization of chicken oviductal epithelial cells (OECs) as a bioreactor to produce therapeutic proteins has shown promise, but the time taken to obtain transgenic offspring impedes efficient validation of protein production. To overcome this barrier, we focused on the immortalization of chicken OECs (cOECs) using retroviral vector-mediated c-MYC oncogene expression to establish an in vitro pre-validation system for chicken bioreactors. The resulting immortalized cOECs exhibited sustained proliferation, maintained a normal diploid chicken karyotype, and expressed key oviduct-specific genes (OVA, OVM, LYZ, AVD, and ESR1). Notably, hormonal administration of diethylstilbestrol (DES) or progesterone (P4) upregulated oviduct-specific genes in these cells. To enhance the utility of these immortalized cOECs as an in vitro validation system for chicken bioreactors, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology was employed to knock-in (KI) an enhanced green fluorescence protein (EGFP) gene at the ovalbumin (OVA) locus. The resulting OVA EGFP KI immortalized cOECs secreted both EGFP and OVA proteins into the culture medium, with secretion enhanced under DES treatment. This successful integration of an exogenous gene into cOECs enhances their potential as a versatile in vitro validation system for chicken bioreactors. The established immortalized cOECs overcome previous challenges associated with long-term culture and maintenance, providing a reliable platform for efficient protein production validation. This study presents a comprehensive characterization of the immortalized cOECs, addressing critical limitations associated with in vivo systems and laying a foundation for the development of a streamlined and effective chicken bioreactor model.


Asunto(s)
Reactores Biológicos , Pollos , Células Epiteliales , Oviductos , Animales , Oviductos/citología , Oviductos/metabolismo , Femenino , Ovalbúmina , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo
11.
Poult Sci ; 102(1): 102247, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36335737

RESUMEN

The chicken has potential as an efficient bioreactor system because of its outstanding protein production capacity and low cost. The CRISPR/Cas9-mediated gene-editing system enables production of highly marketable exogenous proteins in transgenic chicken bioreactors. However, because it takes approximately 18 mo to evaluate the recombinant protein productivity of the bioreactor due to the generation interval from G0 founders to G1 egg-laying hens, to verification of the exogenous protein at the early stage is difficult. Here we propose a system for sequential validation of exogenous protein production in chicken bioreactors as in hatching female chicks as well as in egg-laying hens. We generated chicken OVALBUMIN (OVA) EGFP knock-in (KI) chicken (OVA EGFP KI) by CRISPR/Cas9-mediated nonhomologous end joining at the chicken OVA gene locus. Subsequently, the estrogen analog, diethylstilbestrol (DES), was subcutaneously implanted in the abdominal region of 1-wk-old OVA EGFP KI female chicks to artificially increase OVALBUMIN expression. The oviducts of DES-treated OVA EGFP KI female chicks expressed OVA and EGFP at the 3-wk-old stage (10 d after DES treatment). We evaluated the expression of EGFP protein in the oviduct, along with the physical properties of eggs and egg white from OVA EGFP KI hens. The rapid identification and isolation of exogenous protein can be confirmed at a very early stage and high-yield production is possible by targeting the chicken oviduct.


Asunto(s)
Pollos , Óvulo , Animales , Femenino , Ovalbúmina , Pollos/genética , Pollos/metabolismo , Óvulo/metabolismo , Animales Modificados Genéticamente , Oviductos/metabolismo , Reactores Biológicos
12.
Commun Biol ; 6(1): 589, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37264071

RESUMEN

Intravenous immunoglobulin (IVIG) is a plasma-derived polyclonal IgG used for treatment of autoimmune diseases. Studies show that α-2,6 sialylation of the Fc improves anti-inflammatory activity. Also, afucosylation of the Fc efficiently blocks FcγRIIIA by increasing monovalent affinity to this receptor, which can be beneficial for treatment of refractory immune thrombocytopenia (ITP). Here, we generated genome-edited chickens that synthesize human IgG1 Fc in the liver and secrete α-2,6 sialylated and low-fucosylated human IgG1 Fc (rhIgG1 Fc) into serum and egg yolk. Also, rhIgG1 Fc has higher affinity for FcγRIIIA than commercial IVIG. Thus, rhIgG1 Fc efficiently inhibits immune complex-mediated FcγRIIIA crosslinking and subsequent ADCC response. Furthermore, rhIgG1 Fc exerts anti-inflammatory activity in a passive ITP model, demonstrating chicken liver derived rhIgG1 Fc successfully recapitulated efficacy of IVIG. These results show that genome-edited chickens can be used as a production platform for rhIgG1 Fc with beneficial N-glycosylation pattern for anti-inflammatory activities.


Asunto(s)
Inmunoglobulina G , Inmunoglobulinas Intravenosas , Humanos , Animales , Inmunoglobulinas Intravenosas/farmacología , Pollos/metabolismo , Glicosilación , Antiinflamatorios/farmacología
13.
FEBS Open Bio ; 13(5): 833-844, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36961279

RESUMEN

Mitotic arrest is necessary for the embryonic development of germ cells, and thus, it is important to understand the signaling pathways that regulate mitotic arrest. Here, we investigated the signaling pathway dynamics of male embryonic chicken germ cells during mitotic arrest by single-cell transcriptome analysis using germ-cell tracing models. We identified signaling pathways that change at the transcriptional level during chicken male germ-cell development after sex determination. We found that several components of the BMP, Notch, and JAK-STAT signaling pathways were downregulated at the mitotic-arrest stage and were reactivated 1 week after hatching when all germ cells are quiescent after entering mitotic arrest. In addition, the transcriptional levels of components of the MAPK, Hedgehog, and thyroid-hormone signaling pathways were steadily upregulated after mitotic arrest. This suggests the cooperation of multiple signaling pathways during entry into mitotic arrest and subsequent quiescence of chicken male germ cells.


Asunto(s)
Pollos , Transcriptoma , Embrión de Pollo , Animales , Masculino , Pollos/genética , Transcriptoma/genética , Análisis de Expresión Génica de una Sola Célula , Células Germinativas/metabolismo , Transducción de Señal/genética
14.
J Anim Sci Biotechnol ; 13(1): 64, 2022 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-35659766

RESUMEN

BACKGROUND: Germ cell mitotic arrest is conserved in many vertebrates, including birds, although the time of entry or exit into quiescence phase differs. Mitotic arrest is essential for the normal differentiation of male germ cells into spermatogonia and accompanies epigenetic reprogramming and meiosis inhibition from embryonic development to post-hatch. However, mitotic arrest was not well studied in chickens because of the difficulty in obtaining pure germ cells from relevant developmental stage. RESULTS: We performed single-cell RNA sequencing to investigate transcriptional dynamics of male germ cells during mitotic arrest in DAZL::GFP chickens. Using differentially expressed gene analysis and K-means clustering to analyze cells at different developmental stages (E12, E16, and hatch), we found that metabolic and signaling pathways were regulated, and that the epigenome was reprogrammed during mitotic arrest. In particular, we found that histone H3K9 and H3K14 acetylation (by HDAC2) and DNA demethylation (by DNMT3B and HELLS) led to a transcriptionally permissive chromatin state. Furthermore, we found that global DNA demethylation occurred gradually after the onset of mitotic arrest, indicating that the epigenetic-reprogramming schedule of the chicken genome differs from that of the mammalian genome. DNA hypomethylation persisted after hatching, and methylation was slowly re-established 3 weeks later. CONCLUSIONS: We found a unique epigenetic-reprogramming schedule of mitotic-arrested chicken prospermatogonia and prolonged hypomethylation after hatching. This will provide a foundation for understanding the process of germ-cell epigenetic regulation in several species for which this process is not clearly described. Our findings on the biological processes related to sex-specific differentiation of prospermatogonia could help studying germline development in vitro more elaborately.

15.
Sci Rep ; 12(1): 49, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997179

RESUMEN

DNA is susceptible to damage by various sources. When the DNA is damaged, the cell repairs the damage through an appropriate DNA repair pathway. When the cell fails to repair DNA damage, apoptosis is initiated. Although several genes are involved in five major DNA repair pathways and two major apoptosis pathways, a comprehensive understanding of those gene expression is not well-understood in chicken tissues. We performed whole-transcriptome sequencing (WTS) analysis in the chicken embryonic fibroblasts (CEFs), stage X blastoderms, and primordial germ cells (PGCs) to uncover this deficiency. Stage X blastoderms mostly consist of undifferentiated progenitor (pluripotent) cells that have the potency to differentiate into all cell types. PGCs are also undifferentiated progenitor cells that later differentiate into male and female germ cells. CEFs are differentiated and abundant somatic cells. Through WTS analysis, we identified that the DNA repair pathway genes were expressed more highly in blastoderms and high in PGCs than CEFs. Besides, the apoptosis pathway genes were expressed low in blastoderms and PGCs than CEFs. We have also examined the WTS-based expression profiling of candidate pluripotency regulating genes due to the conserved properties of blastoderms and PGCs. In the results, a limited number of pluripotency genes, especially the core transcriptional network, were detected higher in both blastoderms and PGCs than CEFs. Next, we treated the CEFs, blastoderm cells, and PGCs with hydrogen peroxide (H2O2) for 1 h to induce DNA damage. Then, the H2O2 treated cells were incubated in fresh media for 3-12 h to observe DNA repair. Subsequent analyses in treated cells found that blastoderm cells and PGCs were more likely to undergo apoptosis along with the loss of pluripotency and less likely to undergo DNA repair, contrasting with CEFs. These properties of blastoderms and PGCs should be necessary to preserve genome stability during the development of early embryos and germ cells, respectively.


Asunto(s)
Apoptosis/genética , Blastodermo/metabolismo , Pollos/genética , Reparación del ADN/genética , Inestabilidad Genómica/fisiología , Células Germinativas/metabolismo , Animales , Embrión de Pollo , Daño del ADN/efectos de los fármacos , Fibroblastos/metabolismo , Regulación del Desarrollo de la Expresión Génica , Peróxido de Hidrógeno/farmacología , Células Madre Pluripotentes/metabolismo , Transcriptoma , Secuenciación del Exoma
16.
Front Nutr ; 9: 1068558, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36761986

RESUMEN

The prevalence of obesity-related metabolic diseases caused by insulin resistance is rapidly increasing worldwide. Adiponectin (ADPN), a hormone derived from adipose tissue, is a potential therapeutic agent for insulin resistance. Chickens are considered efficient bioreactors for recombinant protein production because they secrete large amounts of high-concentration proteins from the oviduct. Additionally, chickens express high levels of high-molecular-weight (HMW) ADPN, which is considered the active form in the body. Therefore, in this study, a gene-targeted chicken model was produced in which the gene encoding human ADPN was inserted into Ovalbumin (OVA) using the CRISPR/Cas9 system, and the characteristics of the resulting recombinant ADPN protein were evaluated. As a result, human ADPN was expressed in G1 hen oviducts and egg whites of OVA ADPN knock-in (KI) chickens. The concentration of ADPN in egg white ranged from 1.47 to 4.59 mg/mL, of which HMW ADPN accounted for ∼29% (0.24-1.49 mg/mL). Importantly, egg white-derived ADPN promoted expression of genes related to fatty acid oxidation and activated the 5'-AMP-activated protein kinase (AMPK) signaling pathway in muscle cells. In summary, the OVA gene-targeted chicken bioreactor proved to be an advantageous model for production of human ADPN, and the resulting protein was of sufficient quantity and efficacy for industrial use.

17.
Comput Struct Biotechnol J ; 20: 1654-1669, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35465157

RESUMEN

Avian germ cells can be distinguished by certain characteristics during development. On the basis of these characteristics, germ cells can be used for germline transmission. However, the dynamic transcriptional landscape of avian germ cells during development is unknown. Here, we used a novel germ-cell-tracing method to monitor and isolate chicken germ cells at different stages of development. We targeted the deleted in azoospermia like (DAZL) gene, a germ-cell-specific marker, to integrate a green fluorescent protein (GFP) reporter gene without affecting endogenous DAZL expression. The resulting transgenic chickens (DAZL::GFP) were used to uncover the dynamic transcriptional landscape of avian germ cells. Single-cell RNA sequencing of 4,752 male and 13,028 female DAZL::GFP germ cells isolated from embryonic day E2.5 to 1 week post-hatch identified sex-specific developmental stages (4 stages in male and 5 stages in female) and trajectories (apoptosis and meiosis paths in female) of chicken germ cells. The male and female trajectories were characterized by a gradual acquisition of stage-specific transcription factor activities. We also identified evolutionary conserved and species-specific gene expression programs during both chicken and human germ-cell development. Collectively, these novel analyses provide mechanistic insights into chicken germ-cell development.

18.
Biochem Biophys Res Commun ; 404(2): 646-51, 2011 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-21146497

RESUMEN

HIV-1 can establish a latent infection in memory CD4+T cells to evade the host immune response. CD4 molecules can act not only as the HIV-1 receptor for entry but also as the trigger in an intracellular signaling cascade for T-cell activation and proliferation via protein tyrosine kinases. Novel chronic HIV-1-infected A3.01-derived (NCHA) cells were used to examine the involvement of CD4 downstream signaling in HIV-1 latency. CD4 receptors in NCHA cells were dramatically downregulated on its surface but were slightly decreased in whole-cell lysates. The expression levels of CD4 downstream signaling molecules, including P56(Lck), ZAP-70, LAT, and c-Jun, were sharply decreased in NCHA cells. The lowered histone modifications of H3K4me3 and H3K9ac correlated with the downregulation of P56(Lck), ZAP-70, and LAT in NCHA cells. AP-1 binding activity was also reduced in NCHA cells. LAT and c-Jun suppressed in NCHA cells were highly induced after PMA treatment. In epigenetic analysis, other signal transduction molecules which are associated with active and/or latent HIV-1 infection showed normal states in HIV-1 latently infected cells compared to A3.01 cells. In conclusion, we demonstrated that the HIV-1 latent state is sustained by the reduction of downstream signaling molecules via the downregulation of CD4 and the attenuated activity of transcription factor as AP-1. The HIV-1 latency model via T-cell deactivation may provide some clues for the development of the new antireservoir therapy.


Asunto(s)
Antígenos CD4/inmunología , Linfocitos T CD4-Positivos/inmunología , Infecciones por VIH/inmunología , Infecciones por VIH/virología , VIH-1/fisiología , Latencia del Virus/inmunología , Antígenos CD4/genética , Línea Celular , Regulación hacia Abajo , Histonas/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Activación de Linfocitos , Factor de Transcripción AP-1/metabolismo , Latencia del Virus/genética
19.
Blood ; 113(18): 4273-80, 2009 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-19139082

RESUMEN

In contrast to previous notions of the help-independency of memory CD8 T cells during secondary expansion, here we show that CD4 help is indispensable for the re-expansion of once-helped memory CD8 T cells, using a hematopoietic cell-specific dominant minor histocompatibility (H) antigen, H60, as a model antigen. H60-specific memory CD8 T cells generated during a helped primary response vigorously expanded only when rechallenged under helped conditions. The help requirement for an optimal secondary response was confirmed by a reduction in peak size by CD4 depletion, and was reproduced after skin transplantation. Helpless conditions or noncognate separate help during the secondary response resulted in a significant reduction in the peak size and different response kinetics. Providing CD4 help again during a tertiary challenge restored robust memory expansion; however, the repeated deprivation of help further reduced clonal expansion. Adoptively transferred memory CD8 T cells did not proliferate in CD40L(-/-) hosts. In the CD40(-/-) hosts, marginal memory expansion was detected after priming with male H60 cells but was completely abolished by priming with peptide-loaded CD40(-/-) cells, suggesting the essential role of CD40 and CD40L in memory responses. These results provide insight into the control of minor H antigen-specific CD8 T-cell responses, to maximize the graft-versus-leukemia response.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Memoria Inmunológica/inmunología , Activación de Linfocitos/fisiología , Antígenos de Histocompatibilidad Menor/inmunología , Trasplante de Piel/inmunología , Traslado Adoptivo , Animales , Antígenos CD40/fisiología , Ligando de CD40/fisiología , Células Cultivadas , Citotoxicidad Inmunológica , Femenino , Citometría de Flujo , Supervivencia de Injerto/inmunología , Inmunización , Interferón gamma/metabolismo , Prueba de Cultivo Mixto de Linfocitos , Depleción Linfocítica , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Bazo/citología , Bazo/inmunología , Bazo/metabolismo
20.
Virol J ; 8: 179, 2011 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-21496352

RESUMEN

BACKGROUND: The persistence of latently human immunodeficiency virus-1 (HIV-1) infected cellular reservoirs in resting CD4+ T cells is a major obstacle to HIV-1 eradication. The detailed mechanism of HIV-1 latency remains unclear. We investigated histones and their post-translational modification associated with HIV-1 latency in novel HIV-1 latently infected cell lines established previously, NCHA cells. METHODS: To examine histones and their modification linked with HIV-1 latency, the expression profiles for core histone proteins and histone deacetylases (HDACs) in NCHA cells were characterized by RT-PCR, ELISA, and western blot. The levels of histone acetylation and methylation at histone H3 Lys9 (H3K9) and Lys27 (H3K27) in HIV-1 latently infected cells were analyzed by western blot and chromatin immunoprecipitation-sequencing (ChIP-seq). RESULTS: The expression levels for four core histone proteins (H2A, H2B, H3 and H4) and HDACs (HDAC1-8) in NCHA cells were not significantly different from those in their parental cells. Histone H3K9 and H3K27 acetylations in NCHA cells showed no difference in parental and NCHA cells, whereas the levels of di- and tri-methylation were increased in NCHA cells. The expression of EED which is a component of polycomb repressive complex 2 (PRC2), and BMI1 and RING2 which are constituents of PRC1, were upregulated in NCHA cells. In addition, more ubiquitylation at histone H2A was detected in NCHA cells. CONCLUSIONS: Our results suggest that tri-methylation of histone H3K27 and H2A ubiquitylation via polycomb group protein may play a crucial role in epigenetic silencing accounting for HIV-1 latency in NCHA cells.


Asunto(s)
Silenciador del Gen , Infecciones por VIH/metabolismo , VIH-1/genética , Proteínas Represoras/metabolismo , Latencia del Virus , Acetilación , Línea Celular , Regulación de la Expresión Génica , Infecciones por VIH/genética , Infecciones por VIH/virología , VIH-1/fisiología , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Metilación , Complejo Represivo Polycomb 2 , Proteínas del Grupo Polycomb , Proteínas Represoras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA