Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Biophys J ; 112(11): 2348-2356, 2017 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-28591607

RESUMEN

In vitro single-vesicle fusion assays are important tools to analyze the details of SNARE-mediated fusion processes. In this study, we employed planar pore-spanning membranes (PSMs) prepared on porous silicon substrates with large pore diameters of 5 µm, allowing us to compare the process of vesicle docking and fusion on the supported parts of the PSMs (s-PSMs) with that on the freestanding membrane parts (f-PSM) under the exact same experimental conditions. The PSMs harbor the t-SNARE ΔN49-complex to investigate the dynamics and fusogenicity of single large unilamellar vesicles doped with the v-SNARE synaptobrevin 2 by means of spinning-disc confocal microscopy with a time resolution of 10 ms. Our results demonstrate that vesicles docked to the s-PSM were fully immobile, whereas those docked to the f-PSM were mobile with a mean diffusion coefficient of 0.42 µm2/s. Despite the different dynamics of the vesicles on the two membrane types, similar fusion kinetics were observed, giving rise to a common fusion mechanism. Further investigations of individual lipid mixing events on the s-PSMs revealed semi-stable post-fusion structures.


Asunto(s)
Fusión de Membrana/fisiología , Proteínas SNARE/metabolismo , Liposomas Unilamelares/metabolismo , Animales , Difusión , Escherichia coli , Cinética , Membrana Dobles de Lípidos/química , Microscopía Confocal , Microscopía Fluorescente , Porosidad , Ratas , Proteínas SNARE/química , Compuestos de Silicona , Dióxido de Silicio , Liposomas Unilamelares/química , Proteína 2 de Membrana Asociada a Vesículas/química , Proteína 2 de Membrana Asociada a Vesículas/metabolismo
2.
J Biol Chem ; 291(15): 7868-76, 2016 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-26884341

RESUMEN

Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a minor component of total plasma membrane lipids, but it has a substantial role in the regulation of many cellular functions, including exo- and endocytosis. Recently, it was shown that PI(4,5)P2and syntaxin 1, a SNARE protein that catalyzes regulated exocytosis, form domains in the plasma membrane that constitute recognition sites for vesicle docking. Also, calcium was shown to promote syntaxin 1 clustering in the plasma membrane, but the molecular mechanism was unknown. Here, using a combination of superresolution stimulated emission depletion microscopy, FRET, and atomic force microscopy, we show that Ca(2+)acts as a charge bridge that specifically and reversibly connects multiple syntaxin 1/PI(4,5)P2complexes into larger mesoscale domains. This transient reorganization of the plasma membrane by physiological Ca(2+)concentrations is likely to be important for Ca(2+)-regulated secretion.


Asunto(s)
Calcio/metabolismo , Membrana Celular/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Sintaxina 1/metabolismo , Animales , Calcio/química , Células PC12 , Estructura Terciaria de Proteína , Ratas
4.
Nat Commun ; 6: 5984, 2015 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-25635869

RESUMEN

The clustering of proteins and lipids in distinct microdomains is emerging as an important principle for the spatial patterning of biological membranes. Such domain formation can be the result of hydrophobic and ionic interactions with membrane lipids as well as of specific protein-protein interactions. Here using plasma membrane-resident SNARE proteins as model, we show that hydrophobic mismatch between the length of transmembrane domains (TMDs) and the thickness of the lipid membrane suffices to induce clustering of proteins. Even when the TMDs differ in length by only a single residue, hydrophobic mismatch can segregate structurally closely homologous membrane proteins in distinct membrane domains. Domain formation is further fine-tuned by interactions with polyanionic phosphoinositides and homo and heterotypic protein interactions. Our findings demonstrate that hydrophobic mismatch contributes to the structural organization of membranes.


Asunto(s)
Proteínas SNARE/química , Proteínas SNARE/metabolismo , Animales , Transferencia Resonante de Energía de Fluorescencia , Técnica del Anticuerpo Fluorescente , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Simulación de Dinámica Molecular , Fosfatidilinositoles/metabolismo , Unión Proteica , Estructura Terciaria de Proteína , Ratas , Proteínas SNARE/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA