Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 29(21): 6040-6065, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37605971

RESUMEN

Insect and disease outbreaks in forests are biotic disturbances that can profoundly alter ecosystem dynamics. In many parts of the world, these disturbance regimes are intensifying as the climate changes and shifts the distribution of species and biomes. As a result, key forest ecosystem services, such as carbon sequestration, regulation of water flows, wood production, protection of soils, and the conservation of biodiversity, could be increasingly compromised. Despite the relevance of these detrimental effects, there are currently no spatially detailed databases that record insect and disease disturbances on forests at the pan-European scale. Here, we present the new Database of European Forest Insect and Disease Disturbances (DEFID2). It comprises over 650,000 harmonized georeferenced records, mapped as polygons or points, of insects and disease disturbances that occurred between 1963 and 2021 in European forests. The records currently span eight different countries and were acquired through diverse methods (e.g., ground surveys, remote sensing techniques). The records in DEFID2 are described by a set of qualitative attributes, including severity and patterns of damage symptoms, agents, host tree species, climate-driven trigger factors, silvicultural practices, and eventual sanitary interventions. They are further complemented with a satellite-based quantitative characterization of the affected forest areas based on Landsat Normalized Burn Ratio time series, and damage metrics derived from them using the LandTrendr spectral-temporal segmentation algorithm (including onset, duration, magnitude, and rate of the disturbance), and possible interactions with windthrow and wildfire events. The DEFID2 database is a novel resource for many large-scale applications dealing with biotic disturbances. It offers a unique contribution to design networks of experiments, improve our understanding of ecological processes underlying biotic forest disturbances, monitor their dynamics, and enhance their representation in land-climate models. Further data sharing is encouraged to extend and improve the DEFID2 database continuously. The database is freely available at https://jeodpp.jrc.ec.europa.eu/ftp/jrc-opendata/FOREST/DISTURBANCES/DEFID2/.

2.
PNAS Nexus ; 2(4): pgad076, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37065619

RESUMEN

Sustainable tree resource management is the key to mitigating climate warming, fostering a green economy, and protecting valuable habitats. Detailed knowledge about tree resources is a prerequisite for such management but is conventionally based on plot-scale data, which often neglects trees outside forests. Here, we present a deep learning-based framework that provides location, crown area, and height for individual overstory trees from aerial images at country scale. We apply the framework on data covering Denmark and show that large trees (stem diameter >10 cm) can be identified with a low bias (12.5%) and that trees outside forests contribute to 30% of the total tree cover, which is typically unrecognized in national inventories. The bias is high (46.6%) when our results are evaluated against all trees taller than 1.3 m, which involve undetectable small or understory trees. Furthermore, we demonstrate that only marginal effort is needed to transfer our framework to data from Finland, despite markedly dissimilar data sources. Our work lays the foundation for digitalized national databases, where large trees are spatially traceable and manageable.

3.
Remote Sens Ecol Conserv ; 9(5): 587-598, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-38505271

RESUMEN

Climate change and increasing human activities are impacting ecosystems and their biodiversity. Quantitative measurements of essential biodiversity variables (EBV) and essential climate variables are used to monitor biodiversity and carbon dynamics and evaluate policy and management interventions. Ecosystem structure is at the core of EBVs and carbon stock estimation and can help to inform assessments of species and species diversity. Ecosystem structure is also used as an indirect indicator of habitat quality and expected species richness or species community composition. Spaceborne measurements can provide large-scale insight into monitoring the structural dynamics of ecosystems, but they generally lack consistent, robust, timely and detailed information regarding their full three-dimensional vegetation structure at local scales. Here we demonstrate the potential of high-frequency ground-based laser scanning to systematically monitor structural changes in vegetation. We present a proof-of-concept high-temporal ecosystem structure time series of 5 years in a temperate forest using terrestrial laser scanning (TLS). We also present data from automated high-temporal laser scanning that can allow upscaling of vegetation structure scanning, overcoming the limitations of a typically opportunistic TLS measurement approach. Automated monitoring will be a critical component to build a network of field monitoring sites that can provide the required calibration data for satellite missions to effectively monitor the structural dynamics of vegetation over large areas. Within this perspective, we reflect on how this network could be designed and discuss implementation pathways.

4.
Front Plant Sci ; 13: 817792, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35356110

RESUMEN

Trees adapt to their growing conditions by regulating the sizes of their parts and their relationships. For example, removal or death of adjacent trees increases the growing space and the amount of light received by the remaining trees enabling their crowns to expand. Knowledge about the effects of silvicultural practices on crown size and shape and also about the quality of branches affecting the shape of a crown is, however, still limited. Thus, the aim was to study the crown structure of individual Scots pine trees in forest stands with varying stem densities due to past forest management practices. Furthermore, we wanted to understand how crown and stem attributes and also tree growth affect stem area at the height of maximum crown diameter (SAHMC), which could be used as a proxy for tree growth potential. We used terrestrial laser scanning (TLS) to generate attributes characterizing crown size and shape. The results showed that increasing stem density decreased Scots pine crown size. TLS provided more detailed attributes for crown characterization compared with traditional field measurements. Furthermore, decreasing stem density increased SAHMC, and strong relationships (Spearman's correlations > 0.5) were found between SAHMC and crown and stem size and also stem growth. Thus, this study provided quantitative and more comprehensive characterization of Scots pine crowns and their growth potential. The combination of a traditional growth and yield study design and 3D characterization of crown architecture and growth potential can open up new research possibilities.

5.
Ecol Evol ; 11(6): 2561-2572, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33767821

RESUMEN

Tree functional traits together with processes such as forest regeneration, growth, and mortality affect forest and tree structure. Forest management inherently impacts these processes. Moreover, forest structure, biodiversity, resilience, and carbon uptake can be sustained and enhanced with forest management activities. To assess structural complexity of individual trees, comprehensive and quantitative measures are needed, and they are often lacking for current forest management practices. Here, we utilized 3D information from individual Scots pine (Pinus sylvestris L.) trees obtained with terrestrial laser scanning to, first, assess effects of forest management on structural complexity of individual trees and, second, understand relationship between several tree attributes and structural complexity. We studied structural complexity of individual trees represented by a single scale-independent metric called "box dimension." This study aimed at identifying drivers affecting structural complexity of individual Scots pine trees in boreal forest conditions. The results showed that thinning increased structural complexity of individual Scots pine trees. Furthermore, we found a relationship between structural complexity and stem and crown size and shape as well as tree growth. Thus, it can be concluded that forest management affected structural complexity of individual Scots pine trees in managed boreal forests, and stem, crown, and growth attributes were identified as drivers of it.

6.
Front Plant Sci ; 9: 299, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29568306

RESUMEN

Changing climate is increasing the amount and intensity of forest stress agents, such as drought, pest insects, and pathogens. Leaf water content, measured here in terms of equivalent water thickness (EWT), is an early indicator of tree stress that provides timely information about the health status of forests. Multispectral terrestrial laser scanning (MS-TLS) measures target geometry and reflectance simultaneously, providing spatially explicit reflectance information at several wavelengths. EWT and leaf internal structure affect leaf reflectance in the shortwave infrared region that can be used to predict EWT with MS-TLS. A second wavelength that is sensitive to leaf internal structure but not affected by EWT can be used to normalize leaf internal effects on the shortwave infrared region and improve the prediction of EWT. Here we investigated the relationship between EWT and laser intensity features using multisensor MS-TLS at 690, 905, and 1,550 nm wavelengths with both drought-treated and Endoconidiophora polonica inoculated Norway spruce seedlings to better understand how MS-TLS measurements can explain variation in EWT. In our study, a normalized ratio of two wavelengths at 905 and 1,550 nm and length of seedling explained 91% of the variation (R2) in EWT as the respective prediction accuracy for EWT was 0.003 g/cm2 in greenhouse conditions. The relation between EWT and the normalized ratio of 905 and 1,550 nm wavelengths did not seem sensitive to a decreased point density of the MS-TLS data. Based on our results, different EWTs in Norway spruce seedlings show different spectral responses when measured using MS-TLS. These results can be further used when developing EWT monitoring for improving forest health assessments.

7.
Sci Rep ; 7(1): 13501, 2017 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-29044133

RESUMEN

Norway spruce is one of the most important commercial forestry species in Europe, and is commonly infected by the bark beetle-vectored necrotrophic fungus, Endoconidiophora polonica. Spruce trees display a restricted capacity to respond to environmental perturbations, and we hypothesized that water limitation will increase disease severity in this pathosystem. To test this prediction, 737 seedlings were randomized to high (W+) or low (W-) water availability treatment groups, and experimentally inoculated with one of three E. polonica strains or mock-inoculated. Seedling mortality was monitored throughout an annual growing season, and total seedling growth and lesion length indices were measured at the experiment conclusion. Seedling growth was greater in the W+ than W- treatment group, demonstrating limitation due to water availability. For seedlings infected with two of the fungal strains, no differences in disease severity occurred in response to water availability. For the third fungal strain, however, greater disease severity (mortality and lesion lengths) occurred in W- than W+ seedlings. While the co-circulation in nature of multiple E. polonica strains of varying virulence is known, this is the first experimental evidence that water availability can alter strain-specific disease severity.


Asunto(s)
Bosques , Hongos/patogenicidad , Picea/fisiología , Inmunidad de la Planta , Ciclo Hidrológico , Germinación , Picea/inmunología , Picea/microbiología , Semillas/metabolismo , Semillas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA