Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Neuroimage ; 169: 374-382, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29277401

RESUMEN

Manganese-enhanced magnetic resonance imaging (MEMRI) exploits the biophysical similarity of Ca2+ and Mn2+ to map the brain's activity in vivo. However, to what extent different Ca2+ channels contribute to the enhanced signal that MEMRI provides and how Mn2+ dynamics influence Mn2+ brain accumulation after systemic administration of MnCl2 are not yet fully understood. Here, we demonstrate that mice lacking the L-type Ca2+ channel 1.2 (Cav1.2) in the CNS show approximately 50% less increase in MEMRI contrast after repeated systemic MnCl2 injections, as compared to control mice. In contrast, genetic deletion of L-type Ca2+ channel 1.3 (Cav1.3) did not reduce signal. Brain structure- or cell type-specific deletion of Cav1.2 in combination with voxel-wise MEMRI analysis revealed a preferential accumulation of Mn2+ in projection terminals, which was confirmed by local MnCl2 administration to defined brain areas. Taken together, we provide unequivocal evidence that Cav1.2 represents an important channel for neuronal Mn2+ influx after systemic injections. We also show that after neuronal uptake, Mn2+ preferentially accumulates in projection terminals.


Asunto(s)
Encéfalo , Canales de Calcio Tipo L/metabolismo , Cloruros/administración & dosificación , Aumento de la Imagen/métodos , Imagen por Resonancia Magnética/métodos , Compuestos de Manganeso/administración & dosificación , Manganeso/metabolismo , Neuronas/metabolismo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Tálamo/diagnóstico por imagen , Tálamo/efectos de los fármacos , Tálamo/metabolismo
2.
Infect Immun ; 78(12): 5244-51, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20876293

RESUMEN

Bacterial type IV secretion systems are macromolecule transporters with essential functions for horizontal gene transfer and for symbiotic and pathogenic interactions with eukaryotic host cells. Helicobacter pylori, the causative agent of type B gastritis, peptic ulcers, gastric adenocarcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma, uses the Cag type IV secretion system to inject its effector protein CagA into gastric cells. This protein translocation results in altered host cell gene expression profiles and cytoskeletal rearrangements, and it has been linked to cancer development. Interactions of CagA with host cell proteins have been studied in great detail, but little is known about the molecular details of CagA recognition as a type IV secretion substrate or of the translocation process. Apart from components of the secretion apparatus, we previously identified several CagA translocation factors that are either required for or support CagA translocation. To identify protein-protein interactions between these translocation factors, we used a yeast two-hybrid approach comprising all cag pathogenicity island genes. Among several other interactions involving translocation factors, we found a strong interaction between the coupling protein homologue Cagß (HP0524) and the Cag-specific translocation factor CagZ (HP0526). We show that CagZ has a stabilizing effect on Cagß, and we demonstrate protein-protein interactions between the cytoplasmic part of Cagß and CagA and between CagZ and Cagß, using immunoprecipitation and pull-down assays. Together, our data suggest that these interactions represent a substrate-translocation factor complex at the bacterial cytoplasmic membrane.


Asunto(s)
Antígenos Bacterianos/fisiología , Proteínas Bacterianas/fisiología , Sistemas de Secreción Bacterianos/fisiología , Helicobacter pylori/fisiología , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Traslocación Bacteriana/fisiología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/fisiopatología , Helicobacter pylori/metabolismo , Immunoblotting , Interleucina-8/fisiología , Dominios y Motivos de Interacción de Proteínas/fisiología , Técnicas del Sistema de Dos Híbridos
3.
J Psychiatr Res ; 90: 46-59, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28222356

RESUMEN

The development of exaggerated avoidance behavior is largely responsible for the decreased quality of life in patients suffering from anxiety disorders. Studies using animal models have contributed to the understanding of the neural mechanisms underlying the acquisition of avoidance responses. However, much less is known about its extinction. Here we provide evidence in mice that learning about the safety of an environment (i.e., safety learning) rather than repeated execution of the avoided response in absence of negative consequences (i.e., response extinction) allowed the animals to overcome their avoidance behavior in a step-down avoidance task. This process was context-dependent and could be blocked by pharmacological (3 mg/kg, s.c.; SR141716) or genetic (lack of cannabinoid CB1 receptors in neurons expressing dopamine D1 receptors) inactivation of CB1 receptors. In turn, the endocannabinoid reuptake inhibitor AM404 (3 mg/kg, i.p.) facilitated safety learning in a CB1-dependent manner and attenuated the relapse of avoidance behavior 28 days after conditioning. Safety learning crucially depended on endocannabinoid signaling at level of the hippocampus, since intrahippocampal SR141716 treatment impaired, whereas AM404 facilitated safety learning. Other than AM404, treatment with diazepam (1 mg/kg, i.p.) impaired safety learning. Drug effects on behavior were directly mirrored by drug effects on evoked activity propagation through the hippocampal trisynaptic circuit in brain slices: As revealed by voltage-sensitive dye imaging, diazepam impaired whereas AM404 facilitated activity propagation to CA1 in a CB1-dependent manner. In line with this, systemic AM404 enhanced safety learning-induced expression of Egr1 at level of CA1. Together, our data render it likely that AM404 promotes safety learning by enhancing information flow through the trisynaptic circuit to CA1.


Asunto(s)
Reacción de Prevención/fisiología , Extinción Psicológica/fisiología , Hipocampo/metabolismo , Animales , Ácidos Araquidónicos/farmacología , Reacción de Prevención/efectos de los fármacos , Antagonistas de Receptores de Cannabinoides/farmacología , Proteína 1 de la Respuesta de Crecimiento Precoz/metabolismo , Extinción Psicológica/efectos de los fármacos , Hipocampo/diagnóstico por imagen , Hipocampo/efectos de los fármacos , Inhibición Psicológica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Piperidinas/farmacología , Pirazoles/farmacología , Receptor Cannabinoide CB1/deficiencia , Receptor Cannabinoide CB1/genética , Rimonabant , Imagen de Colorante Sensible al Voltaje
4.
Sci Rep ; 6: 19293, 2016 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-26757616

RESUMEN

Manipulating the function of neurons and circuits that translate electrical and chemical signals into behavior represents a major challenges in neuroscience. In addition to optogenetic methods using light-activatable channels, pharmacogenetic methods with ligand induced modulation of cell signaling and excitability have been developed. However, they are largely based on ectopic expression of exogenous or chimera proteins. Now, we describe the remote and reversible expression of a Kir2.1 type potassium channel using the chemogenetic technique of small molecule induced protein stabilization. Based on shield1-mediated shedding of a destabilizing domain fused to a protein of interest and inhibition of protein degradation, this principle has been adopted for biomedicine, but not in neuroscience so far. Here, we apply this chemogenetic approach in brain research for the first time in order to control a potassium channel in a remote and reversible manner. We could show that shield1-mediated ectopic Kir2.1 stabilization induces neuronal silencing in vitro and in vivo in the mouse brain. We also validated this novel pharmacogenetic method in different neurobehavioral paradigms.The DD-Kir2.1 may complement the existing portfolio of pharmaco- and optogenetic techniques for specific neuron manipulation, but it may also provide an example for future applications of this principle in neuroscience research.


Asunto(s)
Neuronas/efectos de los fármacos , Neuronas/fisiología , Canales de Potasio/metabolismo , Animales , Conducta Animal/efectos de los fármacos , Línea Celular , Humanos , Memoria/efectos de los fármacos , Ratones , Morfolinas/farmacología , Canales de Potasio/genética , Canales de Potasio de Rectificación Interna/genética , Canales de Potasio de Rectificación Interna/metabolismo , Dominios y Motivos de Interacción de Proteínas/genética , Estabilidad Proteica/efectos de los fármacos , Proteína 1A de Unión a Tacrolimus/genética , Proteína 1A de Unión a Tacrolimus/metabolismo
5.
Pain ; 156(12): 2479-2491, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26262826

RESUMEN

Visceral pain represents a major clinical challenge in the management of many gastrointestinal disorders, eg, pancreatitis. However, cerebral neurobiological mechanisms underlying visceral nociception are poorly understood. As a representative model of visceral nociception, we applied cerulein hyperstimulation in C57BL6 mice to induce acute pancreatitis and performed a behavioral test battery and c-Fos staining of brains. We observed a specific pain phenotype and a significant increase in c-Fos immunoreactivity in the paraventricular nucleus of the thalamus (PVT), the periaqueductal gray, and the medial prefrontal cortex (mPFC). Using neuronal tracing, we observed projections of the PVT to cortical layers of the mPFC with contacts to inhibitory GABAergic neurons. These inhibitory neurons showed more activation after cerulein treatment suggesting thalamocortical "feedforward inhibition" in visceral nociception. The activity of neurons in pancreatitis-related pain centers was pharmacogenetically modulated by designer receptors exclusively activated by designer drugs, selectively and cell type specifically expressed in target neurons using adeno-associated virus-mediated gene transfer. Pharmacogenetic inhibition of PVT but not periaqueductal gray neurons attenuated visceral pain and induced an activation of the descending inhibitory pain pathway. Activation of glutamatergic principle neurons in the mPFC, but not inhibitory neurons, also reversed visceral nociception. These data reveal novel insights into central pain processing that underlies visceral nociception and may trigger the development of novel, potent centrally acting analgesic drugs.


Asunto(s)
Afecto , Conducta Animal , Núcleos Talámicos de la Línea Media/metabolismo , Neuronas/metabolismo , Nocicepción/fisiología , Sustancia Gris Periacueductal/metabolismo , Corteza Prefrontal/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Dolor Visceral/metabolismo , Animales , Ceruletida/toxicidad , Dependovirus , Inmunohistoquímica , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Vías Nerviosas/metabolismo , Trazadores del Tracto Neuronal , Pancreatitis/inducido químicamente , Dolor Visceral/psicología
6.
Pain ; 155(10): 2153-60, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25139591

RESUMEN

The transient receptor potential vanilloid receptor type-1 (TRPV1) is critically involved in peripheral nociceptive processes of somatic and visceral pain. However, the role of the capsaicin receptor in the brain regarding visceral pain remains elusive. Here, we studied the contribution of TRPV1 to abdominal pain transmission at different nociceptive pathway levels using TRPV1 knock-out mice, resiniferatoxin-mediated deletion of TRPV1-positive primary sensory neurons, and intracerebral TRPV1 antagonism. We found that constitutive genetic TRPV1 deletion or peripheral TRPV1 deletion reduced acetic acid-evoked abdominal constrictions, without affecting referred abdominal hyperalgesia or allodynia in an acute pancreatitis model of visceral pain. Notably, intracerebral TRPV1 antagonism by SB 366791 significantly reduced chemical and inflammatory spontaneous abdominal nocifensive responses, as observed by reduced expressions of nociceptive facial grimacing, illustrating the affective component of pain. In addition to the established role of cerebral TRPV1 in anxiety, fear, or emotional stress, we demonstrate here for the first time that TRPV1 in the brain modulates visceral nociception by interfering with the affective component of abdominal pain.


Asunto(s)
Dolor Abdominal/metabolismo , Conducta Animal/fisiología , Emociones/fisiología , Hiperalgesia/metabolismo , Canales Catiónicos TRPV/metabolismo , Dolor Abdominal/genética , Anilidas/farmacología , Animales , Conducta Animal/efectos de los fármacos , Cinamatos/farmacología , Hiperalgesia/genética , Ratones , Ratones Noqueados , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/metabolismo , Dimensión del Dolor , Umbral del Dolor/efectos de los fármacos , Umbral del Dolor/fisiología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/genética
7.
J Biol Rhythms ; 29(4): 288-98, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25238857

RESUMEN

Within the suprachiasmatic nucleus (SCN) of the hypothalamus, circadian timekeeping and resetting have been shown to be largely dependent on both membrane depolarization and intracellular second-messenger signaling. In both of these processes, voltage-gated calcium channels (VGCCs) mediate voltage-dependent calcium influx, which propagates neural impulses by stimulating vesicle fusion and instigates intracellular pathways resulting in clock gene expression. Through the cumulative actions of these processes, the phase of the internal clock is modified to match the light cycle of the external environment. To parse out the distinct roles of the L-type VGCCs, we analyzed mice deficient in Cav1.2 (Cacna1c) in brain tissue. We found that mice deficient in the Cav1.2 channel exhibited a significant reduction in their ability to phase-advance circadian behavior when subjected to a light pulse in the late night. Furthermore, the study revealed that the expression of Cav1.2 mRNA was rhythmic (peaking during the late night) and was regulated by the circadian clock component REV-ERBα. Finally, the induction of clock genes in both the early and late subjective night was affected by the loss of Cav1.2, with reductions in Per2 and Per1 in the early and late night, respectively. In sum, these results reveal a role of the L-type VGCC Cav1.2 in mediating both clock gene expression and phase advances in response to a light pulse in the late night.


Asunto(s)
Canales de Calcio Tipo L/genética , Relojes Circadianos/genética , Ritmo Circadiano/genética , Miembro 1 del Grupo D de la Subfamilia 1 de Receptores Nucleares/genética , Animales , Calcio/metabolismo , Expresión Génica/genética , Luz , Ratones , Ratones Endogámicos C57BL , Proteínas Nucleares/genética , Proteínas Circadianas Period/genética , Fotoperiodo , ARN Mensajero/genética , Núcleo Supraquiasmático/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA