Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 186(13): 2802-2822.e22, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37220746

RESUMEN

Systemic candidiasis is a common, high-mortality, nosocomial fungal infection. Unexpectedly, it has emerged as a complication of anti-complement C5-targeted monoclonal antibody treatment, indicating a critical niche for C5 in antifungal immunity. We identified transcription of complement system genes as the top biological pathway induced in candidemic patients and as predictive of candidemia. Mechanistically, C5a-C5aR1 promoted fungal clearance and host survival in a mouse model of systemic candidiasis by stimulating phagocyte effector function and ERK- and AKT-dependent survival in infected tissues. C5ar1 ablation rewired macrophage metabolism downstream of mTOR, promoting their apoptosis and enhancing mortality through kidney injury. Besides hepatocyte-derived C5, local C5 produced intrinsically by phagocytes provided a key substrate for antifungal protection. Lower serum C5a concentrations or a C5 polymorphism that decreases leukocyte C5 expression correlated independently with poor patient outcomes. Thus, local, phagocyte-derived C5 production licenses phagocyte antimicrobial function and confers innate protection during systemic fungal infection.


Asunto(s)
Antifúngicos , Candidiasis , Animales , Ratones , Complemento C5/metabolismo , Fagocitos/metabolismo
2.
Immunity ; 54(5): 1002-1021.e10, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33761330

RESUMEN

Arthritis typically involves recurrence and progressive worsening at specific predilection sites, but the checkpoints between remission and persistence remain unknown. Here, we defined the molecular and cellular mechanisms of this inflammation-mediated tissue priming. Re-exposure to inflammatory stimuli caused aggravated arthritis in rodent models. Tissue priming developed locally and independently of adaptive immunity. Repeatedly stimulated primed synovial fibroblasts (SFs) exhibited enhanced metabolic activity inducing functional changes with intensified migration, invasiveness and osteoclastogenesis. Meanwhile, human SF from patients with established arthritis displayed a similar primed phenotype. Transcriptomic and epigenomic analyses as well as genetic and pharmacological targeting demonstrated that inflammatory tissue priming relies on intracellular complement C3- and C3a receptor-activation and downstream mammalian target of rapamycin- and hypoxia-inducible factor 1α-mediated metabolic SF invigoration that prevents activation-induced senescence, enhances NLRP3 inflammasome activity, and in consequence sensitizes tissue for inflammation. Our study suggests possibilities for therapeutic intervention abrogating tissue priming without immunosuppression.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Fibroblastos/inmunología , Inflamación/inmunología , Membrana Sinovial/inmunología , Inmunidad Adaptativa/inmunología , Animales , Artritis Reumatoide/inmunología , Línea Celular , Perros , Humanos , Mediadores de Inflamación/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones SCID , Ratas Wistar , Transducción de Señal/inmunología
3.
Development ; 150(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36762625

RESUMEN

Microglia, a resident immune cell of the central nervous system (CNS), play a pivotal role in facilitating neurovascular development through mechanisms that are not fully understood. Previous reports indicate a role for microglia in regulating astrocyte density. This current work resolves the mechanism through which microglia facilitate astrocyte spatial patterning and superficial vascular bed formation in the neuroretina during development. Ablation of microglia increased astrocyte density and altered spatial patterning. Mechanistically, we show that microglia regulate the formation of the spatially organized astrocyte template required for subsequent vascular growth, through the complement C3/C3aR axis during neuroretinal development. Lack of C3 or C3aR hindered the developmental phagocytic removal of astrocyte bodies and resulted in increased astrocyte density. In addition, increased astrocyte density was associated with elevated proangiogenic extracellular matrix gene expression in C3- and C3aR-deficient retinas, resulting in increased vascular density. These data demonstrate that microglia regulate developmental astrocyte and vascular network spatial patterning in the neuroretina via the complement axis.


Asunto(s)
Complemento C3 , Microglía , Astrocitos , Complemento C3/genética , Retina
4.
J Pathol ; 262(2): 161-174, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-37929639

RESUMEN

Bullous pemphigoid (BP) is an autoimmune blistering disease characterized by autoantibodies targeting type XVII collagen (Col17) with the noncollagenous 16A (NC16A) ectodomain representing the immunodominant site. The role of additional extracellular targets of Col17 outside NC16A has not been unequivocally demonstrated. In this study, we showed that Col17 ectodomain-reactive patient sera depleted in NC16A IgG induced dermal-epidermal separation in a cryosection model indicating the pathogenic potential of anti-Col17 non-NC16A extracellular IgG. Moreover, injection of IgG targeting the murine Col17 NC14-1 domains (downstream of NC15A, the murine homologue of human NC16A) into C57BL/6J mice resulted in erythematous skin lesions and erosions. Clinical findings were accompanied by IgG/C3 deposits along the basement membrane and subepidermal blistering with inflammatory infiltrates. Disease development was significantly reduced in either Fc-gamma receptor (FcγR)- or complement-5a receptor-1 (C5aR1)-deficient mice. Inhibition of the neonatal FcR (FcRn), an atypical FcγR regulating IgG homeostasis, with the murine Fc fragment IgG2c-ABDEG, a derivative of efgartigimod, reduced anti-NC14-1 IgG levels, resulting in ameliorated skin inflammation compared with isotype-treated controls. These data demonstrate that the pathogenic effects of IgG targeting the Col17 domain outside human NC16A/murine NC15A are partly attributable to antibody-mediated FcγR- and C5aR1 effector mechanisms while pharmacological inhibition of the FcRn represents a promising treatment for BP. The mouse model of BP will be instrumental in further investigating the role of Col17 non-NC16A/NC15A extracellular epitopes and validating new therapies for this disease. © 2023 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Asunto(s)
Colágeno Tipo XVII , Penfigoide Ampolloso , Animales , Ratones , Humanos , Penfigoide Ampolloso/tratamiento farmacológico , Receptores de IgG/genética , Autoantígenos/genética , Colágenos no Fibrilares/genética , Ratones Endogámicos C57BL , Autoanticuerpos , Inmunoglobulina G
5.
Eur J Immunol ; 53(10): e2249979, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37381711

RESUMEN

Allergic conditions are associated with canonical and noncanonical activation of the complement system leading to the release of several bioactive mediators with inflammatory and immunoregulatory properties that regulate the immune response in response to allergens during the sensitization and/or the effector phase of allergic diseases. Further, immune sensors of complement and regulator proteins of the cascade impact on the development of allergies. These bioactive mediators comprise the small and large cleavage fragments of C3 and C5. Here, we provide an update on the multiple roles of immune sensors, regulators, and bioactive mediators of complement in allergic airway diseases, food allergies, and anaphylaxis. A particular emphasis is on the anaphylatoxins C3a and C5a and their receptors, which are expressed on many of the effector cells in allergy such as mast cells, eosinophils, basophils, macrophages, and neutrophils. Also, we will discuss the multiple pathways, by which the anaphylatoxins initiate and control the development of maladaptive type 2 immunity including their impact on innate lymphoid cell recruitment and activation. Finally, we briefly comment on the potential to therapeutically target the complement system in different allergic conditions.


Asunto(s)
Hipersensibilidad a los Alimentos , Inmunidad Innata , Humanos , Linfocitos/metabolismo , Anafilatoxinas/metabolismo , Basófilos , Complemento C5a
6.
Nat Immunol ; 13(12): 1213-21, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23086448

RESUMEN

CD46 is a complement regulator with important roles related to the immune response. CD46 functions as a pathogen receptor and is a potent costimulator for the induction of interferon-γ (IFN-γ)-secreting effector T helper type 1 (T(H)1) cells and their subsequent switch into interleukin 10 (IL-10)-producing regulatory T cells. Here we identified the Notch family member Jagged1 as a physiological ligand for CD46. Furthermore, we found that CD46 regulated the expression of Notch receptors and ligands during T cell activation and that disturbance of the CD46-Notch crosstalk impeded induction of IFN-γ and switching to IL-10. Notably, CD4(+) T cells from CD46-deficient patients and patients with hypomorphic mutations in the gene encoding Jagged1 (Alagille syndrome) failed to mount appropriate T(H)1 responses in vitro and in vivo, which suggested that CD46-Jagged1 crosstalk is responsible for the recurrent infections in subpopulations of these patients.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Activación de Linfocitos , Proteína Cofactora de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Células TH1/inmunología , Adulto , Síndrome de Alagille/genética , Síndrome de Alagille/inmunología , Animales , Células Cultivadas , Niño , Preescolar , Humanos , Interferón gamma/metabolismo , Interleucina-10/inmunología , Interleucina-10/metabolismo , Proteína Jagged-1 , Ratones , Ratones SCID , Ratones Transgénicos , Interferencia de ARN , ARN Interferente Pequeño , Proteínas Serrate-Jagged , Células TH1/metabolismo , alfa Catenina/genética
7.
Allergy ; 78(7): 1893-1908, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36757006

RESUMEN

BACKGROUND: Pulmonary eosinophils comprise at least two distinct populations of resident eosinophils (rEOS) and inflammatory eosinophils (iEOS), the latter recruited in response to pulmonary inflammation. Here, we determined the impact of complement activation on rEOS and iEOS trafficking and function in two models of pulmonary inflammation. METHODS: BALB/c wild-type and C5ar1-/- mice were exposed to different allergens or IL-33. Eosinophil populations in the airways, lung, or mediastinal lymph nodes (mLN) were characterized by FACS or immunohistochemistry. rEOS and iEOS functions were determined in vivo and in vitro. RESULTS: HDM and IL-33 exposure induced a strong accumulation of iEOS but not rEOS in the airways, lungs, and mLNs. rEOS and iEOS expressed C3/C5 and C5aR1, which were significantly higher in iEOS. Initial pulmonary trafficking of iEOS was markedly reduced in C5ar1-/- mice and associated with less IL-5 production from ILC2 cells. Functionally, adoptively transferred pulmonary iEOS from WT but not from C5ar1-/- mice-induced airway hyperresponsiveness (AHR), which was associated with significantly reduced C5ar1-/- iEOS degranulation. Pulmonary iEOS but not rEOS were frequently associated with T cells in lung tissue. After HDM or IL-33 exposure, iEOS but not rEOS were found in mLNs, which were significantly reduced in C5ar1-/- mice. C5ar1-/- iEOS expressed less costimulatory molecules, associated with a decreased potency to drive antigen-specific T cell proliferation and differentiation into memory T cells. CONCLUSIONS: We uncovered novel roles for C5aR1 in iEOS trafficking and activation, which affects key aspects of allergic inflammation such as AHR, ILC2, and T cell activation.


Asunto(s)
Asma , Eosinófilos , Ratones , Animales , Eosinófilos/patología , Interleucina-33/genética , Inmunidad Innata , Linfocitos/patología , Asma/patología , Pulmón/patología
8.
Nature ; 543(7643): 108-112, 2017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28225753

RESUMEN

Gaucher disease is caused by mutations in GBA1, which encodes the lysosomal enzyme glucocerebrosidase (GCase). GBA1 mutations drive extensive accumulation of glucosylceramide (GC) in multiple innate and adaptive immune cells in the spleen, liver, lung and bone marrow, often leading to chronic inflammation. The mechanisms that connect excess GC to tissue inflammation remain unknown. Here we show that activation of complement C5a and C5a receptor 1 (C5aR1) controls GC accumulation and the inflammatory response in experimental and clinical Gaucher disease. Marked local and systemic complement activation occurred in GCase-deficient mice or after pharmacological inhibition of GCase and was associated with GC storage, tissue inflammation and proinflammatory cytokine production. Whereas all GCase-inhibited mice died within 4-5 weeks, mice deficient in both GCase and C5aR1, and wild-type mice in which GCase and C5aR were pharmacologically inhibited, were protected from these adverse effects and consequently survived. In mice and humans, GCase deficiency was associated with strong formation of complement-activating GC-specific IgG autoantibodies, leading to complement activation and C5a generation. Subsequent C5aR1 activation controlled UDP-glucose ceramide glucosyltransferase production, thereby tipping the balance between GC formation and degradation. Thus, extensive GC storage induces complement-activating IgG autoantibodies that drive a pathway of C5a generation and C5aR1 activation that fuels a cycle of cellular GC accumulation, innate and adaptive immune cell recruitment and activation in Gaucher disease. As enzyme replacement and substrate reduction therapies are expensive and still associated with inflammation, increased risk of cancer and Parkinson disease, targeting C5aR1 may serve as a treatment option for patients with Gaucher disease and, possibly, other lysosomal storage diseases.


Asunto(s)
Proteínas del Sistema Complemento/inmunología , Enfermedad de Gaucher/inmunología , Enfermedad de Gaucher/patología , Glucosilceramidas/inmunología , Glucosilceramidas/metabolismo , Inflamación/inmunología , Inflamación/patología , Animales , Células Presentadoras de Antígenos/citología , Células Presentadoras de Antígenos/inmunología , Autoanticuerpos/inmunología , Activación de Complemento , Complemento C5a/biosíntesis , Complemento C5a/inmunología , Proteínas del Sistema Complemento/biosíntesis , Citocinas/biosíntesis , Citocinas/inmunología , Modelos Animales de Enfermedad , Femenino , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/prevención & control , Glucosilceramidasa/antagonistas & inhibidores , Glucosilceramidasa/deficiencia , Glucosilceramidasa/genética , Glucosiltransferasas/biosíntesis , Glucosiltransferasas/metabolismo , Humanos , Inmunoglobulina G/inmunología , Inflamación/metabolismo , Inflamación/prevención & control , Masculino , Ratones , Receptor de Anafilatoxina C5a/deficiencia , Receptor de Anafilatoxina C5a/inmunología , Receptor de Anafilatoxina C5a/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología
9.
Am J Physiol Renal Physiol ; 322(6): F597-F610, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35379003

RESUMEN

We have previously reported that increased expression and activation of kidney cell complement components play an important role in the pathogenesis of renal scarring. Here, we used floxed green fluorescent protein (GFP)-C5a receptor 1 (C5aR1) knockin mice (GFP-C5ar1fl/fl) and the model of folic acid (FA)-induced kidney injury to define the cell types and potential mechanisms by which increased C5aR1 activation leads to fibrosis. Using flow cytometry and confocal microscopy, we identified macrophages as the major interstitial cell type showing increased expression of C5aR1 in FA-treated mice. C5ar1fl/fl.Lyz2Cre+/- mice, in which C5aR1 has been specifically deleted in lysozyme M-expressing myeloid cells, experienced reduced fibrosis compared with control C5ar1fl/fl mice. Examination of C5aR1-expressing macrophage transcriptomes by gene set enrichment analysis demonstrated that these cells were enriched in pathways corresponding to the complement cascade, collagen formation, and the NABA matrisome, strongly pointing to their critical roles in tissue repair/scarring. Since C5aR1 was also detected in a small population of platelet-derived growth factor receptor-ß+ GFP+ cells, we developed C5ar1fl/fl.Foxd1Cre+/- mice, in which C5aR1 is deleted specifically in pericytes, and found reduced FA-induced fibrosis. Primary cell cultures of platelet-derived growth factor receptor-ß+ pericytes isolated from FA-treated C5ar1fl/fl.Foxd1Cre+/- mice showed reduced secretion of several cytokines, including IL-6 and macrophage inflammatory protein-2, compared with pericytes isolated from FA-treated control GFP-C5ar1fl/fl mice. Collectively, these data imply that C5a/C5aR1 axis activation primarily in interstitial cells contributes to the development of renal fibrosis.NEW & NOTEWORTHY This study used novel green fluorescent protein C5a receptor 1 floxed mice and the model of folic acid-mediated kidney fibrosis to demonstrate the pathogenic role of increased expression of this complement receptor on macrophages.


Asunto(s)
Ácido Fólico , Receptor de Anafilatoxina C5a , Animales , Cicatriz , Fibrosis , Ácido Fólico/farmacología , Proteínas Fluorescentes Verdes , Riñón/patología , Ratones , Ratones Noqueados , Células Mieloides/patología , Receptor de Anafilatoxina C5a/genética , Receptores del Factor de Crecimiento Derivado de Plaquetas
10.
Semin Immunol ; 37: 30-42, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29478824

RESUMEN

The complement system is well appreciated for its role as an important effector of innate immunity that is activated by the classical, lectin or alternative pathway. C5a is one important mediator of the system that is generated in response to canonical and non-canonical C5 cleavage by circulating or cell-derived proteases. In addition to its function as a chemoattractant for neutrophils and other myeloid effectors, C5a and its sister molecule C3a have concerted roles in cell homeostasis and surveillance. Through activation of their cognate G protein coupled receptors, C3a and C5a regulate multiple intracellular pathways within the mitochondria and the lysosomal compartments that harbor multiple enzymes critical for protein, carbohydrate and lipid metabolism. Genetic mutations of such lysosomal enzymes or their receptors can result in the compartmental accumulation of specific classes of substrates in this organelle summarized as lysosomal storage diseases (LSD). A frequent LSD is Gaucher disease (GD), caused by autosomal recessively inherited mutations in GBA1, resulting in functional defects of the encoded enzyme, acid ß-glucosidase (glucocerebrosidase, GCase). Such mutations promote excessive accumulation of ß-glucosylceramide (GC or GL1) in innate and adaptive immune cells frequently associated with chronic inflammation. Recently, we uncovered an unexpected link between the C5a and C5a receptor 1 (C5aR1) axis and the accumulation of GL1 in experimental and clinical GD. Here, we will review the pathways of complement activation in GD, its role as a mediator of the inflammatory response, and its impact on glucosphingolipid metabolism. Further, we will discuss the potential role of the C5a/C5aR1 axis in GL1-specific autoantibody formation and as a novel therapeutic target in GD.


Asunto(s)
Complemento C5a/metabolismo , Enfermedad de Gaucher/inmunología , Glucosilceramidasa/genética , Inflamación/inmunología , Enfermedades por Almacenamiento Lisosomal/inmunología , Animales , Autoanticuerpos/metabolismo , Enfermedad de Gaucher/genética , Glucosilceramidas/metabolismo , Humanos , Receptor de Anafilatoxina C5a/metabolismo
11.
Nature ; 517(7535): 501-4, 2015 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-25363774

RESUMEN

Immunoglobulins protect against disease to a considerable extent by activating complement and stimulatory immunoglobulin crystallizable fragment receptors (Ig FcRs), and aggregating microbial pathogens. Yet IgG1, the predominant murine serum Ig isotype, cannot activate complement by the classical pathway, binds more avidly to an inhibitory than to stimulatory FcRs, and has limited ability to aggregate pathogens. In these regards, it resembles human IgG4 (ref. 4). We hypothesized that limited ability to activate effector mechanisms might protect against immune complex immunopathology. Here we show that IgG1-deficient (γ1(-)) mice, immunized with a potent antigen, develop lethal renal disease soon after they begin to produce antigen-specific antibody, whereas similarly immunized wild-type mice remain healthy. Surprisingly, renal disease in this model is complement and FcR independent and results from immune complex precipitation in glomerular capillaries, as in some cryoglobulinaemic humans. IgG3, which self-associates to form large immune complexes, accounts for more than 97% of the mouse Ig in this cryoglobulin; furthermore, glomerular disease develops when mice are injected with IgG3 anti-trinitrophenyl (TNP) monoclonal antibody followed by a TNP-labelled protein. Renal disease is prevented in both active and passive immunization models by antigen-specific IgG1; other isotypes are less potent at preventing disease. These observations demonstrate the adaptive significance of Ig isotypes that poorly activate effector mechanisms, reveal an immune-complex-dependent, complement- and FcR-independent nephrotoxic mechanism, and suggest that isotypes that poorly activate effector mechanisms may be useful for inhibiting immune complex immunopathology.


Asunto(s)
Crioglobulinemia/complicaciones , Glomerulonefritis/etiología , Glomerulonefritis/prevención & control , Inmunoglobulina G/inmunología , Animales , Anticuerpos Monoclonales/inmunología , Complejo Antígeno-Anticuerpo/química , Complejo Antígeno-Anticuerpo/inmunología , Antígenos/inmunología , Unión Competitiva , Proteínas del Sistema Complemento , Crioglobulinemia/inmunología , Crioglobulinemia/patología , Modelos Animales de Enfermedad , Femenino , Glomerulonefritis/inmunología , Glomerulonefritis/patología , Cabras , Masculino , Ratones , Receptores de IgG , Solubilidad , Trinitrobencenos/inmunología
12.
Int J Mol Sci ; 22(23)2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34884512

RESUMEN

Gaucher disease is a lysosomal storage disease, which happens due to mutations in GBA1/Gba1 that encodes the enzyme termed as lysosomal acid ß-glucosidase. The major function of this enzyme is to catalyze glucosylceramide (GC) into glucose and ceramide. The deficiency of this enzyme and resultant abnormal accumulation of GC cause altered function of several of the innate and adaptive immune cells. For example, augmented infiltration of T cells contributes to the increased production of pro-inflammatory cytokines, (e.g., IFNγ, TNFα, IL6, IL12p40, IL12p70, IL23, and IL17A/F). This leads to tissue damage in a genetic mouse model (Gba19V/-) of Gaucher disease. The cellular mechanism(s) by which increased tissue infiltration of T cells occurs in this disease is not fully understood. Here, we delineate role of the CXCR3 receptor and its exogenous C-X-C motif chemokine ligand 9 (CXCL9) in induction of increased tissue recruitment of CD4+ T and CD8+ T cells in Gaucher disease. Intracellular FACS staining of macrophages (Mϕs) and dendritic cells (DCs) from Gba19V/- mice showed elevated production of CXCL9. Purified CD4+ T cells and the CD8+ T cells from Gba19V/- mice showed increased expression of CXCR3. Ex vivo and in vivo chemotaxis experiments showed CXCL9 involvement in the recruitment of Gba19V/- T cells. Furthermore, antibody blockade of the CXCL9 receptor (CXCR3) on T cells caused marked reduction in CXCL9- mediated chemotaxis of T cells in Gba19V/- mice. These data implicate abnormalities of the CXCL9-CXCR3 axis leading to enhanced tissue recruitment of T cells in Gaucher disease. Such results provide a rationale for blockade of the CXCL9/CXCR3 axis as potential new therapeutic targets for the treatment of inflammation in Gaucher disease.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Quimiocina CXCL9/metabolismo , Modelos Animales de Enfermedad , Enfermedad de Gaucher/inmunología , Glucosilceramidasa/fisiología , Inflamación/inmunología , Receptores CXCR3/metabolismo , Animales , Linfocitos T CD8-positivos/patología , Quimiocina CXCL9/genética , Enfermedad de Gaucher/metabolismo , Enfermedad de Gaucher/patología , Inflamación/metabolismo , Inflamación/patología , Ligandos , Macrófagos/inmunología , Macrófagos/patología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Receptores CXCR3/genética
14.
Int J Mol Sci ; 21(20)2020 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-33050608

RESUMEN

Allergic asthma is a chronical pulmonary disease with high prevalence. It manifests as a maladaptive immune response to common airborne allergens and is characterized by airway hyperresponsiveness, eosinophilia, type 2 cytokine-associated inflammation, and mucus overproduction. Alveolar macrophages (AMs), although contributing to lung homeostasis and tolerance to allergens at steady state, have attracted less attention compared to professional antigen-presenting and adaptive immune cells in their contributions. Using an acute model of house dust mite-driven allergic asthma in mice, we showed that a fraction of resident tissue-associated AMs, while polarizing to the alternatively activated M2 phenotype, exhibited signs of polynucleation and polyploidy. Mechanistically, in vitro assays showed that only Granulocyte-Macrophage Colony Stimulating Factor and interleukins IL-13 and IL-33, but not IL-4 or IL-5, participate in the establishment of this phenotype, which resulted from division defects and not cell-cell fusion as shown by microscopy. Intriguingly, mRNA analysis of AMs isolated from allergic asthmatic lungs failed to show changes in the expression of genes involved in DNA damage control except for MafB. Altogether, our data support the idea that upon allergic inflammation, AMs undergo DNA damage-induced stresses, which may provide new unconventional therapeutical approaches to treat allergic asthma.


Asunto(s)
Asma/etiología , Asma/metabolismo , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interleucina-33/farmacología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Poliploidía , Animales , Asma/patología , Biomarcadores , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Expresión Génica , Células Gigantes/efectos de los fármacos , Células Gigantes/metabolismo , Antígenos de Histocompatibilidad Clase II/inmunología , Activación de Macrófagos , Macrófagos Alveolares/citología , Ratones
15.
Immunol Rev ; 274(1): 112-126, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27782330

RESUMEN

The activation of the complement system by canonical and non-canonical mechanisms results in the generation of multiple C3 and C5 cleavage fragments including anaphylatoxins C3a and C5a as well as opsonizing C3b/iC3b. It is now well appreciated that anaphylatoxins not only act as pro-inflammatory mediators but as immunoregulatory molecules that control the activation status of cells and tissue at several levels. Likewise, C3b/iC3b is more than the opsonizing fragment that facilitates engulfment and destruction of targets by phagocytes. In the circulation, it also facilitates the transport and delivery of bacteria and immune complexes to phagocytes, through a process known as immune adherence, with consequences for adaptive immunity. Here, we will discuss non-classical immunoregulatory properties of C3 and C5 cleavage fragments. We highlight the influence of anaphylatoxins on Th2 and Th17 cell development during allergic asthma with a particular emphasis on their role in the modulation of CD11b+ conventional dendritic cells and monocyte-derived dendritic cells. Furthermore, we discuss the control of anaphylatoxin-mediated activation of dendritic cells and allergic effector cells by adaptive immune mechanisms that involve allergen-specific IgG1 antibodies and plasma or regulatory T cell-derived IL-10 production. Finally, we take a fresh look at immune adherence with a particular focus on the development of antibacterial cytotoxic T-cell responses.


Asunto(s)
Complemento C3/metabolismo , Complemento C5/metabolismo , Células Dendríticas/inmunología , Hipersensibilidad/inmunología , Células TH1/inmunología , Células Th17/inmunología , Inmunidad Adaptativa , Animales , Diferenciación Celular , Activación de Complemento , Complemento C3/inmunología , Complemento C5/inmunología , Humanos , Inmunidad Innata , Inmunomodulación , Proteolisis
16.
Clin Exp Allergy ; 49(9): 1245-1257, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31265181

RESUMEN

BACKGROUND: A close association between obesity and asthma has been described. The nature of this association remains elusive, especially with respect to allergic asthma. Controversial findings exist regarding the impact of short-term high-fat diet (HFD) feeding on the development of allergic asthma. OBJECTIVE: To delineate the impact of short-term HFD feeding on the development of experimental allergic asthma. METHODS: Female C57BL/6JRJ mice were fed with a short-term HFD or chow diet (CD) for 12 weeks. Allergic asthma was induced by intraperitoneal OVA/alum sensitization followed by repeated OVA airway challenges. We determined airway hyperresponsiveness (AHR) and pulmonary inflammation by histologic and flow cytometric analysis of immune cells. Furthermore, we assessed the impact of HFD on dendritic cell (DC)-mediated activation of T cells. RESULTS: Female mice showed a mild increase in body weight accompanied by mild metabolic alterations. Upon OVA challenge, CD-fed mice developed strong AHR and airway inflammation, which were markedly reduced in HFD-fed mice. Mucus production was similar in both treatment groups. OVA-induced increases in DC and CD4+ T-cell recruitment to the lungs were significantly attenuated in HFD-fed mice. MHC-II expression and CD40 expression in pulmonary CD11b+ DCs were markedly lower in HFD-fed compared to CD-fed mice, which was associated in vivo with a decreased T helper (Th) 1/17 differentiation and Treg formation without impacting Th2 differentiation. CONCLUSIONS/CLINICAL RELEVANCE: These findings suggest that short-term HFD feeding attenuates the development of AHR, airway inflammation, pulmonary DC recruitment and MHC-II/CD40 expression leading to diminished Th1/17 but unchanged Th2 differentiation. Thus, short-term HFD feeding and associated metabolic alterations may have protective effects in allergic asthma development.


Asunto(s)
Alimentación Animal , Asma/inmunología , Asma/prevención & control , Diferenciación Celular/efectos de los fármacos , Grasas de la Dieta/farmacología , Linfocitos T Colaboradores-Inductores/inmunología , Animales , Asma/inducido químicamente , Diferenciación Celular/inmunología , Modelos Animales de Enfermedad , Femenino , Ratones
17.
Allergy ; 74(4): 767-779, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30341777

RESUMEN

BACKGROUND: Food-induced anaphylaxis is a serious allergic reaction caused by Fcε-receptor activation on mast cells (MCs). The exact mechanisms breaking oral tolerance and the effector pathways driving food allergy remain elusive. As complement is activated in food-induced anaphylaxis, we aimed to assess the role of C5a in disease pathogenesis. METHODS: Oral antigen-induced food-induced anaphylaxis was induced in BALB/c wild-type (wt) and C5ar1-/- mice. Readouts included diarrhea development, changes in rectal temperature, hematocrit, antigen-specific serum IgE, MCPT-1, and intestinal MC numbers, as well as FcεR1-mediated MC functions including C5a receptor 1 (C5aR1) regulation. Further, histamine-mediated hypothermia and regulation of endothelial tight junctions were determined. RESULTS: Repeated oral OVA challenge resulted in diarrhea, hypothermia, increased hematocrit, high OVA-specific serum IgE, and MCPT-1 levels in wt mice. Male C5ar1-/- mice were completely whereas female C5ar1-/- mice were partially protected from anaphylaxis development. Serum MCPT-1 levels were reduced gender-independent, whereas IgE levels were reduced in male but not in female C5ar1-/- mice. Mechanistically, IgE-mediated degranulation and IL-6 production from C5ar1-/- BMMCs of both sexes were significantly reduced. Importantly, FcεR1 cross-linking strongly upregulated C5aR1 MC expression in vitro and in vivo. Finally, C5ar1-/- male mice were largely protected from histamine-induced hypovolemic shock, which was associated with protection from histamine-induced barrier dysfunction in vitro following C5aR targeting. CONCLUSIONS: Our findings identify C5aR1 activation as an important driver of IgE-mediated food allergy through regulation of allergen-specific IgE production, FcεR1-mediated MC degranulation, and histamine-driven effector functions preferentially in male mice.


Asunto(s)
Hipersensibilidad a los Alimentos/etiología , Inmunoglobulina E/sangre , Receptor de Anafilatoxina C5a/genética , Factores Sexuales , Anafilaxia , Animales , Degranulación de la Célula , Quimasas/sangre , Femenino , Masculino , Mastocitos/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Receptor de Anafilatoxina C5a/deficiencia , Receptores de IgE/inmunología
18.
J Immunol ; 199(9): 3234-3248, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-28864475

RESUMEN

The biological significance of C5a receptor [(C5aR)2/C5L2], a seven-transmembrane receptor binding C5a and C5adesArg, remains ill-defined. Specific ligation of C5aR2 inhibits C5a-induced ERK1/2 activation, strengthening the view that C5aR2 regulates C5aR1-mediated effector functions. Although C5aR2 and C5aR1 are often coexpressed, a detailed picture of C5aR2 expression in murine cells and tissues is still lacking. To close this gap, we generated a floxed tandem dye (td)Tomato-C5aR2 knock-in mouse that we used to track C5aR2 expression in tissue-residing and circulating immune cells. We found the strongest C5aR2 expression in the brain, bone marrow, and airways. All myeloid-derived cells expressed C5aR2, although with different intensities. C5aR2 expression in blood and tissue neutrophils was strong and homogeneous. Specific ligation of C5aR2 in neutrophils from tdTomato-C5aR2 mice blocked C5a-driven ERK1/2 phosphorylation, demonstrating functionality of C5aR2 in the reporter mice. In contrast to neutrophils, we found tissue-specific differences in C5aR2 expression in eosinophils, macrophages, and dendritic cell subsets. Naive and activated T cells stained negative for C5aR2, whereas B cells from different tissues homogeneously expressed C5aR2. Also, NK cell subsets in blood and spleen strongly expressed C5aR2. Activation of C5aR2 in NK cells suppressed IL-12/IL-18-induced IFN-γ production. Intratracheal IL-33 challenge resulted in decreased C5aR2 expression in pulmonary eosinophils and monocyte-derived dendritic cells. In summary, we provide a detailed map of murine C5aR2 immune cell expression in different tissues under steady-state conditions and upon pulmonary inflammation. The C5aR2 knock-in mouse will help to reliably track and conditionally delete C5aR2 expression in experimental models of inflammation.


Asunto(s)
Regulación de la Expresión Génica/inmunología , Leucocitos/inmunología , Neumonía/inmunología , Receptor de Anafilatoxina C5a/inmunología , Animales , Técnicas de Sustitución del Gen , Genes Reporteros/inmunología , Leucocitos/patología , Ratones , Ratones Transgénicos , Especificidad de Órganos/genética , Especificidad de Órganos/inmunología , Neumonía/genética , Neumonía/patología , Receptor de Anafilatoxina C5a/genética
19.
J Immunol ; 198(12): 4846-4854, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28490576

RESUMEN

During sepsis, excessive activation of the complement system with generation of the anaphylatoxin C5a results in profound disturbances in crucial neutrophil functions. Moreover, because neutrophil activity is highly dependent on intracellular pH (pHi), we propose a direct mechanistic link between complement activation and neutrophil pHi In this article, we demonstrate that in vitro exposure of human neutrophils to C5a significantly increased pHi by selective activation of the sodium/hydrogen exchanger. Upstream signaling of C5a-mediated intracellular alkalinization was dependent on C5aR1, intracellular calcium, protein kinase C, and calmodulin, and downstream signaling regulated the release of antibacterial myeloperoxidase and lactoferrin. Notably, the pH shift caused by C5a increased the glucose uptake and activated glycolytic flux in neutrophils, resulting in a significant release of lactate. Furthermore, C5a induced acidification of the extracellular micromilieu. In experimental murine sepsis, pHi of blood neutrophils was analogously alkalinized, which could be normalized by C5aR1 inhibition. In the clinical setting of sepsis, neutrophils from patients with septic shock likewise exhibited a significantly increased pHi These data suggest a novel role for the anaphylatoxin C5a as a master switch of the delicate pHi balance in neutrophils resulting in profound inflammatory and metabolic changes that contribute to hyperlactatemia during sepsis.


Asunto(s)
Activación de Complemento , Complemento C5a/metabolismo , Activación Neutrófila , Neutrófilos/inmunología , Sepsis/inmunología , Sepsis/metabolismo , Animales , Antiácidos/farmacología , Calcio/metabolismo , Calmodulina/metabolismo , Complemento C5a/inmunología , Glucosa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lactatos/metabolismo , Lactoferrina , Ratones , Neutrófilos/química , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Proteína Quinasa C/inmunología , Proteína Quinasa C/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Transducción de Señal
20.
J Immunol ; 199(2): 688-706, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28626064

RESUMEN

C3a exerts multiple biologic functions through activation of its cognate C3a receptor. C3-/- and C3aR-/- mice have been instrumental in defining important roles of the C3a/C3aR axis in the regulation of acute and chronic inflammatory diseases, including ischemia/reperfusion injury, allergic asthma, autoimmune nephritis, and rheumatoid arthritis. Surprisingly little is known about C3aR expression and function in immune and stromal cells. To close this gap, we generated a floxed tandem-dye Tomato (tdTomato)-C3aR reporter knock-in mouse, which we used to monitor C3aR expression in cells residing in the lung, airways, lamina propria (LP) of the small intestine, brain, visceral adipose tissue, bone marrow (BM), spleen, and the circulation. We found a strong expression of tdTomato-C3aR in the brain, lung, LP, and visceral adipose tissue, whereas it was minor in the spleen, blood, BM, and the airways. Most macrophage and eosinophil populations were tdTomato-C3aR+ Interestingly, most tissue eosinophils and some macrophage populations expressed C3aR intracellularly. BM-derived dendritic cells (DCs), lung-resident cluster of differentiation (CD) 11b+ conventional DCs (cDCs) and monocyte-derived DCs, LP CD103+, and CD11b+ cDCs but not pulmonary CD103+ cDCs and splenic DCs were tdTomato-C3aR+ Surprisingly, neither BM, blood, lung neutrophils, nor mast cells expressed C3aR. Similarly, all lymphoid-derived cells were tdTomato-C3aR-, except some LP-derived type 3 innate lymphoid cells. Pulmonary and LP-derived epithelial cells expressed at best minor levels of C3aR. In summary, we provide novel insights into the expression pattern of C3aR in mice. The floxed C3aR knock-in mouse will help to reliably track and conditionally delete C3aR expression in experimental models of inflammation.


Asunto(s)
Genes Reporteros , Receptores Acoplados a Proteínas G/genética , Animales , Médula Ósea/inmunología , Médula Ósea/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Complemento C3a/metabolismo , Eosinófilos/inmunología , Eosinófilos/metabolismo , Expresión Génica , Técnicas de Sustitución del Gen , Pulmón/inmunología , Pulmón/metabolismo , Ratones , Monocitos/inmunología , Monocitos/metabolismo , Neutrófilos/inmunología , Neutrófilos/metabolismo , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Bazo/inmunología , Bazo/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA