RESUMEN
Aspartate incorporated into the protein structure of mussel byssal threads is believed to play an important role, besides the reversible histidine-zinc interactions, in the self-healing behavior of mussel byssal threads. Therefore, copolymers containing both aspartate and histidine moieties are synthesized in order to investigate the influence of aspartate on the complexation of zinc(II) as well as on the self-healing behavior and the mechanical properties of the resulting supramolecular networks. For this purpose, isothermal titration calorimetry measurements of a model aspartate compound as well as of these copolymers are performed and the thermodynamic parameters are utilized for the design of self-healing copolymers. For this purpose, n-lauryl methacrylate-based copolymers containing histidine and aspartate are synthesized and crosslinked with zinc(II) acetate. The self-healing behavior of the supramolecular networks is investigated using scratch healing tests and the mechanical properties by nanoindentation.
Asunto(s)
Ácido Aspártico/química , Histidina/química , Polímeros/síntesis química , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Sustancias Macromoleculares/síntesis química , Sustancias Macromoleculares/química , Estructura Molecular , Polímeros/química , Acetato de Zinc/químicaRESUMEN
In this work, γ-valerolactone (GVL), a green solvent based on largely available biomass (carbohydrates), highly biodegradable, and with low eco-toxicological profile, was used as electrolyte component in energy storage devices. This solvent allowed the realization of electrolytes with good transport properties and high thermal stability, which could be successfully applied in electrical double layer capacitors (EDLCs). GVL-based EDLCs could operate at 2.7-2.9â V and displayed good performance in term of capacitance, cycling stability, as well as specific energy and power. The results of this study indicate that the use of solvent obtained from largely available natural sources is a feasible strategy for the realization of sustainable and safe electrolytes for EDLCs.