Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Plant Physiol ; 177(4): 1396-1409, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29891741

RESUMEN

We investigated the effect of the heterologous expression of phosphoenolpyruvate carboxylase (ZmPepcase), aspartate aminotransferase (GmAspAT), and glutamine synthetase (NtGS) on carbon (C) and nitrogen (N) metabolism in Arabidopsis (Arabidopsis thaliana). These transgenes were expressed either separately or in different combinations. The highest gains in shoot dry weight were observed in transgenic lines coexpressing all three genes. Tracer experiments using NaH14CO3 suggested that the coexpression of ZmPepcase, GmAspAT, and NtGS resulted in a higher flux of assimilated CO2 toward sugars and amino acids. Upon feeding the leaf discs with glycine-1-14C, transgenic lines evolved significantly lower 14CO2 levels than the wild type, suggesting that a higher reassimilation of CO2 evolved during photorespiration. Leaves of transgenic plants accumulated significantly lower ammonium without any significant difference in the levels of photorespiratory ammonium relative to the wild type, suggesting a higher reassimilation of photorespired NH3 Transgenic lines also showed improved photosynthetic rates, higher shoot biomass accumulation, and improved seed yield in comparison with wild-type plants under both optimum and limiting N conditions. This work demonstrates that the heterologous coexpression of ZmPepcase, GmAspAT, and NtGS reduced the photorespiratory loss of C and N with concomitant enhancements in shoot biomass and seed yield.


Asunto(s)
Arabidopsis/fisiología , Aspartato Aminotransferasas/genética , Glutamato-Amoníaco Ligasa/genética , Fosfoenolpiruvato Carboxilasa/genética , Aminoácidos/metabolismo , Amoníaco/metabolismo , Arabidopsis/genética , Aspartato Aminotransferasas/metabolismo , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Nitrógeno/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/genética , Brotes de la Planta/genética , Plantas Modificadas Genéticamente , Semillas/genética , Semillas/crecimiento & desarrollo , Glycine max/genética , Nicotiana/genética , Zea mays/genética
2.
MethodsX ; 12: 102505, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38162146

RESUMEN

Plant scientists across the globe are interested in studying the root growth architecture of plants to understand different processes determining growth and development in plants. In the majority of cases, root growth-related experiments are carried out on petri plates filled with solid nutrient media. However, plants growing in these plates are often exposed to conditions that are not close to the natural conditions. Also, it is difficult to pour two different media on the same plate which is quite a useful feature to study the effect of specific treatment on plant growth. In the present work, we describe an improved and easy-to-use petri plate system useful for studying root growth characteristics of young plants grown over solid nutrient media. In comparison to the conventional methods, the present plate system offers an advantage in terms of facilitating the pouring of two different media in the same plate, avoiding contact of the aerial part of the plant with nutrient media, and ensuring the growth of roots under dark conditions. The described plate, therefore, provides a convenient system to study root growth under conditions close to natural conditions and hence minimizing experimental artifacts. •The plate system facilitates the pouring of two different nutrient media into the same plate.•The aerial part of the seedling does not come in contact with the media.•Ensures growth of roots under dark conditions.

3.
J Mass Spectrom ; 59(10): e5094, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39323213

RESUMEN

The estimation of relative levels of amino acids is crucial for understanding various biological processes in plants, including photosynthesis, stress tolerance, and the uptake and translocation of nutrients. A wide range of liquid chromatography (LC; HPLC/UHPLC)-based methods is available for measuring the quantity of amino acids in plants. Additionally, the coupling of LC with mass spectrometry (MS) significantly enhanced the robustness of existing chromatographic methods used for amino acid quantification. However, accurate annotation and integration of mass peaks can be challenging for plant biologists with limited experience in analyzing MS data, especially in studies involving large datasets with multiple treatments and/or replicates. Further, there are instances when the experiment demands an overall view of the amino acids profile rather than focusing on absolute quantification. The present protocol provides a detailed LC-MS method for obtaining a qualitative amino acids profile using MS-DIAL, a versatile and user-friendly program for processing MS data. Free amino acids were extracted from the leaves of control and Tomato leaf curl Palampur virus (ToLCPalV)-infected Nicotiana benthamiana plants. Extracted amino acids were derivatized and separated using UHPLC-QTOF, with each amino acid subsequently identified by aligning mass data with a custom text library created in MS-DIAL. Further, MS-DIAL was employed for internal standard-based normalization to obtain a qualitative profile of 15 amino acids in control and virus-infected plants. The outlined method aims to simplify the processing of MS data to quickly assess any modulation in amino acid levels in plants with a higher degree of confidence.


Asunto(s)
Aminoácidos , Nicotiana , Hojas de la Planta , Aminoácidos/análisis , Aminoácidos/metabolismo , Nicotiana/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Cromatografía Líquida de Alta Presión/métodos , Espectrometría de Masas/métodos , Cromatografía Liquida/métodos , Programas Informáticos , Cromatografía Líquida con Espectrometría de Masas
4.
Front Plant Sci ; 13: 1053524, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36589073

RESUMEN

Peptidyl-prolyl cis-trans isomerases (PPIases) are ubiquitous proteins which are essential for cis-trans isomerisation of peptide bonds preceding the proline residue. PPIases are categorized into four sub-families viz., cyclophilins, FK506-binding proteins (FKBPs), parvulins and protein phosphatase 2A phosphatase activators (PTPAs). Apart from catalysing the cis-trans isomerization, these proteins have also been implicated in diverse cellular functions. Though PPIases have been identified in several important crop plants, information on these proteins, except cyclophilins, is scanty in wheat. In order to understand the role of these genes in wheat, we carried out genome-wide identification using computational approaches. The present study resulted in identification of 71 FKBP (TaFKBP) 12 parvulin (TaPar) and 3 PTPA (TaPTPA) genes in hexaploid wheat genome, which are distributed on different chromosomes with uneven gene densities. The TaFKBP and TaPar proteins, besides PPIase domain, also contain additional domains, indicating functional diversification. In silico prediction also revealed that TaFKBPs are localized to ER, nucleus, chloroplast and cytoplasm, while the TaPars are confined to cytoplasm and nucleus. The TaPTPAs, on the contrary, appear to be present only in the cytoplasm. Evolutionary studies predicted that most of the TaFKBP, TaPar and TaPTPA genes in hexaploid wheat have been derived from their progenitor species, with some events of loss or gain. Syntenic analysis revealed the presence of many collinear blocks of TaFKBP genes in wheat and its sub-genome donors. qRT-PCR analysis demonstrated that expression of TaFKBP and TaPar genes is regulated differentially by heat stress, suggesting their likely involvement in thermotolerance. The findings of this study will provide basis for further functional characterization of these genes and their likely applications in crop improvement.

5.
Plant Physiol Biochem ; 163: 36-44, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33812225

RESUMEN

Thaumatin-like proteins (TLPs) are pathogenesis-related (PR5) proteins, which are induced in response to various biotic and abiotic stresses. The present work was carried out to clone TLP of Camellia sinensis (CsTLP) and to evaluate the response of transgenic lines of Arabidopsis constitutively expressing CsTLP under drought conditions. Data showed that transgenic lines exhibited lower relative electrolyte leakage and higher water retention capacity as compared to the wild-type (WT) plants under drought stress. In addition, results with confocal microscopy showed CsTLP + GFP fusion protein to be localized in the cell membrane which moved to the intercellular spaces under prolonged drought stress. Expression of CsTLP enhanced seed yield and the plant survival in transgenic lines as compared to the WT plants under drought stress. Results suggested the importance of CsTLP in improving drought tolerance in Arabidopsis.


Asunto(s)
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Sequías , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente/metabolismo , Semillas/metabolismo , Estrés Fisiológico ,
6.
Plant Physiol Biochem ; 168: 221-229, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34649025

RESUMEN

Superoxide dismutases (SODs) protect the cells by catalyzing the dismutation of harmful superoxide radicals (O2•-) into molecular oxygen (O2) and hydrogen peroxide (H2O2). Here, a Cu, Zn SOD (WT) from a high altitude plant (Potentilla atrosanguinea) was engineered by substituting a conserved residue proline to glycine at position 61 (P61G). The computational analysis showed higher structural flexibility and clusters in P61G than WT. The P61G exhibited moderately higher catalytic efficiency (Km = 0.029 µM, Vmax = 1488) than WT protein (Km = 0.038 µM, Vmax = 1290.11). P61G showed higher thermostability as revealed from residual activity (72.25% for P61G than 59.31% for WT after heating at 80 °C for 60 min), differential calorimetry scanning and CD-spectroscopic analysis. Interestingly, the P61G mutation also resulted in enhanced tolerance to H2O2 inactivation than WT protein. The finding on enhancing the biophysico-chemical properties by mutating conserved residue could stand as an example to engineer other enzymes. Also, the reported mutant can be exploited in food and pharmaceutical industries.


Asunto(s)
Cobre , Zinc , Peróxido de Hidrógeno , Mutagénesis Sitio-Dirigida , Superóxido Dismutasa/genética
7.
BMC Mol Biol ; 11: 88, 2010 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-21092138

RESUMEN

BACKGROUND: Geranyl pyrophosphate (GPP) and p-hydroxybenzoate (PHB) are the basic precursors involved in shikonins biosynthesis. GPP is derived from mevalonate (MVA) and/or 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway(s), depending upon the metabolite and the plant system under consideration. PHB, however, is synthesized by only phenylpropanoid (PP) pathway. GPP and PHB are central moieties to yield shikonins through the synthesis of m-geranyl-p-hydroxybenzoate (GHB). Enzyme p-hydroxybenzoate-m-geranyltransferase (PGT) catalyses the coupling of GPP and PHB to yield GHB. The present research was carried out in shikonins yielding plant arnebia [Arnebia euchroma (Royle) Johnston], wherein no molecular work has been reported so far. The objective of the work was to identify the preferred GPP synthesizing pathway for shikonins biosynthesis, and to determine the regulatory genes involved in the biosynthesis of GPP, PHB and GHB. RESULTS: A cell suspension culture-based, low and high shikonins production systems were developed to facilitate pathway identification and finding the regulatory gene. Studies with mevinolin and fosmidomycin, inhibitors of MVA and MEP pathway, respectively suggested MVA as a preferred route of GPP supply for shikonins biosynthesis in arnebia. Accordingly, genes of MVA pathway (eight genes), PP pathway (three genes), and GHB biosynthesis were cloned. Expression studies showed down-regulation of all the genes in response to mevinolin treatment, whereas gene expression was not influenced by fosmidomycin. Expression of all the twelve genes vis-à-vis shikonins content in low and high shikonins production system, over a period of twelve days at frequent intervals, identified critical genes of shikonins biosynthesis in arnebia. CONCLUSION: A positive correlation between shikonins content and expression of 3-hydroxy-3-methylglutaryl-CoA reductase (AeHMGR) and AePGT suggested critical role played by these genes in shikonins biosynthesis. Higher expression of genes of PP pathway was a general feature for higher shikonins biosynthesis.


Asunto(s)
Boraginaceae/enzimología , Regulación de la Expresión Génica de las Plantas , Geraniltranstransferasa/genética , Hidroximetilglutaril-CoA Reductasas/genética , Naftoquinonas/metabolismo , Boraginaceae/genética , Boraginaceae/metabolismo , Genes de Plantas , Geraniltranstransferasa/metabolismo , Hidroximetilglutaril-CoA Reductasas/metabolismo , Parabenos/metabolismo , Fosfatos de Poliisoprenilo/metabolismo
8.
3 Biotech ; 10(6): 255, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32432017

RESUMEN

Picrorhiza kurrooa is an endangered herb known to produce the medicinally important picrosides through isoprenoid pathway. The present work showed the functionality of WRKY motifs (TGAC cis-acting elements) present in the promoters of regulatory genes 3-hydroxy-3-methylglutaryl coenzyme A reductase (Pkhmgr) and 1-deoxy-d-xylulose-5-phosphate synthase (Pkdxs) of the picrosides biosynthetic pathway by electrophoretic mobility shift assay. Also, the two WRKY genes, PkdWRKY and PksWRKY, were characterized and found to contain double and single characteristic WRKY domains, respectively along with a zinc-finger motif in each domain. Expression analysis revealed that PkdWRKY and PksWRKY exhibited a positive and negative correlation, respectively, with picrosides content under the environment of light and in different tissues. Functional evaluation in yeast showed DNA binding ability of both PksWRKY and PkdWRKY; however, only PkdWRKY exhibited transcriptional activation ability. Transient overexpression of PkdWRKY and PksWRKY in tobacco modulated the expression of selected native genes of tobacco involved in MVA and MEP pathway suggesting functionality of PkdWRKY and PksWRKY in planta. Collectively, data suggested that PkdWRKY and PksWRKY might be positive and negative regulators, respectively in the picrosides biosynthetic pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA