Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Mol Cell ; 83(12): 2020-2034.e6, 2023 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-37295429

RESUMEN

Biomolecular condensation underlies the biogenesis of an expanding array of membraneless assemblies, including stress granules (SGs), which form under a variety of cellular stresses. Advances have been made in understanding the molecular grammar of a few scaffold proteins that make up these phases, but how the partitioning of hundreds of SG proteins is regulated remains largely unresolved. While investigating the rules that govern the condensation of ataxin-2, an SG protein implicated in neurodegenerative disease, we unexpectedly identified a short 14 aa sequence that acts as a condensation switch and is conserved across the eukaryote lineage. We identify poly(A)-binding proteins as unconventional RNA-dependent chaperones that control this regulatory switch. Our results uncover a hierarchy of cis and trans interactions that fine-tune ataxin-2 condensation and reveal an unexpected molecular function for ancient poly(A)-binding proteins as regulators of biomolecular condensate proteins. These findings may inspire approaches to therapeutically target aberrant phases in disease.


Asunto(s)
Ataxina-2 , Enfermedades Neurodegenerativas , Humanos , Ataxina-2/genética , Proteína I de Unión a Poli(A) , Enfermedades Neurodegenerativas/metabolismo , Condensados Biomoleculares
2.
Acta Neuropathol ; 146(3): 451-475, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37488208

RESUMEN

Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease mainly affecting upper and lower motoneurons. Several functionally heterogeneous genes have been associated with the familial form of this disorder (fALS), depicting an extremely complex pathogenic landscape. This heterogeneity has limited the identification of an effective therapy, and this bleak prognosis will only improve with a greater understanding of convergent disease mechanisms. Recent evidence from human post-mortem material and diverse model systems has highlighted the synapse as a crucial structure actively involved in disease progression, suggesting that synaptic aberrations might represent a shared pathological feature across the ALS spectrum. To test this hypothesis, we performed the first comprehensive analysis of the synaptic proteome from post-mortem spinal cord and human iPSC-derived motoneurons carrying mutations in the major ALS genes. This integrated approach highlighted perturbations in the molecular machinery controlling vesicle release as a shared pathomechanism in ALS. Mechanistically, phosphoproteomic analysis linked the presynaptic vesicular phenotype to an accumulation of cytotoxic protein aggregates and to the pro-apoptotic activation of the transcription factor c-Jun, providing detailed insights into the shared pathobiochemistry in ALS. Notably, sub-chronic treatment of our iPSC-derived motoneurons with the fatty acid docosahexaenoic acid exerted a neuroprotective effect by efficiently rescuing the alterations revealed by our multidisciplinary approach. Together, this study provides strong evidence for the central and convergent role played by the synaptic microenvironment within the ALS spinal cord and highlights a potential therapeutic target that counteracts degeneration in a heterogeneous cohort of human motoneuron cultures.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Humanos , Esclerosis Amiotrófica Lateral/patología , Enfermedades Neurodegenerativas/patología , Proteómica , Superóxido Dismutasa-1/genética , Neuronas Motoras/metabolismo
3.
Mol Ther ; 30(1): 47-53, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33823304

RESUMEN

Motor neuron diseases are untreatable with common pharmacological approaches. Spinal muscular atrophy (SMA) is caused by SMN1 gene mutations leading to lowered SMN expression. Symptoms are alleviated in infants with a higher copy number of the SMN2 gene, which, however, displays a splicing defect resulting in low SMN levels. Amyotrophic lateral sclerosis (ALS) is caused by a number of mutations, with C9orf72 repeat expansions the most common genetic cause and SOD1 gain-of-function mutations the first genetic cause identified for this disease. Genetic therapies based on oligonucleotides that enhance SMN2 splicing and SMN production or lower SOD1 expression have shown promise in initial clinical trials for individuals with SMA and ALS harboring SOD1 mutations, respectively. Gene addition/silencing approaches using adeno-associated viruses (AAVs) are also currently under clinical investigation in trials for SMA and ALS. Here we provide a brief overview of these efforts and their advantages and challenges. We also review genome editing approaches aimed at correcting the disease-causing mutations or modulating the expression of genetic modifiers, e.g., by repairing SOD1 mutations or the SMN2 splicing defect or deleting C9orf72 expanded repeats. These studies have shown promising results to approach therapeutic trials that should significantly lower the progression of these deadly disorders.


Asunto(s)
Esclerosis Amiotrófica Lateral , Atrofia Muscular Espinal , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/terapia , Edición Génica , Humanos , Lactante , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/terapia , Oligonucleótidos/metabolismo , Empalme del ARN , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo
4.
Genet Med ; 23(5): 968-971, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33500571

RESUMEN

PURPOSE: Electronic health records are gaining popularity to detect and propose interdisciplinary treatments for patients with similar medical histories, diagnoses, and outcomes. These files are compiled by different nonexperts and expert clinicians. Data mining in these unstructured data is a transposable and sustainable methodology to search for patients presenting a high similitude of clinical features. METHODS: Exome and targeted next-generation sequencing bioinformatics analyses were performed at the Imagine Institute. Similarity Index (SI), an algorithm based on a vector space model (VSM) that exploits concepts extracted from clinical narrative reports was used to identify patients with highly similar clinical features. RESULTS: Here we describe a case of "automated diagnosis" indicated by Dr. Warehouse, a biomedical data warehouse oriented toward clinical narrative reports, developed at Necker Children's Hospital using around 500,000 patients' records. Through the use of this warehouse, we were able to match and identify two patients sharing very specific clinical neonatal and childhood features harboring the same de novo variant in KCNA2. CONCLUSION: This innovative application of database clustering clinical features could advance identification of patients with rare and common genetic conditions and detect with high accuracy the natural history of patients harboring similar genetic pathogenic variants.


Asunto(s)
Minería de Datos , Data Warehousing , Niño , Biología Computacional , Registros Electrónicos de Salud , Humanos , Recién Nacido , Canal de Potasio Kv.1.2 , Síndrome
5.
Hum Mutat ; 41(1): 69-80, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31513310

RESUMEN

Developmental and epileptic encephalopathies (DEE) refer to a heterogeneous group of devastating neurodevelopmental disorders. Variants in KCNB1 have been recently reported in patients with early-onset DEE. KCNB1 encodes the α subunit of the delayed rectifier voltage-dependent potassium channel Kv 2.1. We review the 37 previously reported patients carrying 29 distinct KCNB1 variants and significantly expand the mutational spectrum describing 18 novel variants from 27 unreported patients. Most variants occur de novo and mainly consist of missense variants located on the voltage sensor and the pore domain of Kv 2.1. We also report the first inherited variant (p.Arg583*). KCNB1-related encephalopathies encompass a wide spectrum of neurodevelopmental disorders with predominant language difficulties and behavioral impairment. Eighty-five percent of patients developed epilepsies with variable syndromes and prognosis. Truncating variants in the C-terminal domain are associated with a less-severe epileptic phenotype. Overall, this report provides an up-to-date review of the mutational and clinical spectrum of KCNB1, strengthening its place as a causal gene in DEEs and emphasizing the need for further functional studies to unravel the underlying mechanisms.


Asunto(s)
Epilepsia/diagnóstico , Epilepsia/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Trastornos del Neurodesarrollo/diagnóstico , Trastornos del Neurodesarrollo/genética , Canales de Potasio Shab/genética , Alelos , Estudios de Asociación Genética/métodos , Genotipo , Humanos , Fenotipo , Canales de Potasio Shab/química , Canales de Potasio Shab/metabolismo , Relación Estructura-Actividad
6.
Neurobiol Dis ; 142: 104935, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32380281

RESUMEN

Mutations in Fused in sarcoma (FUS), an RNA-binding protein, are known to cause Amyotrophic Lateral Sclerosis (ALS). However, molecular mechanisms due to loss of FUS function remain unclear and controversial. Here, we report the characterization and phenotypic analysis of a deletion mutant of the unique FUS orthologue in zebrafish where Fus protein levels are depleted. The homozygous mutants displayed a reduced lifespan as well as impaired motor abilities associated with specific cellular deficits, including decreased motor neurons length and neuromuscular junctions (NMJ) fragmentation. Furthermore, we demonstrate that these cellular impairments are linked to the misregulation of mRNA expression of acetylcholine receptor (AChR) subunits and histone deacetylase 4, markers of denervation and reinnervation processes observed in ALS patients. In addition, fus loss of function alters tau transcripts favoring the expression of small tau isoforms. Overall, this new animal model extends our knowledge on FUS and supports the relevance of FUS loss of function in ALS physiopathology.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Modelos Animales de Enfermedad , Modelos Genéticos , Proteína FUS de Unión a ARN/genética , Pez Cebra/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Conducta Animal/fisiología , Neuronas Motoras/patología , Mutación , Unión Neuromuscular/patología
7.
EMBO J ; 35(12): 1276-97, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27103069

RESUMEN

An intronic expansion of GGGGCC repeats within the C9ORF72 gene is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia (ALS-FTD). Ataxin-2 with intermediate length of polyglutamine expansions (Ataxin-2 Q30x) is a genetic modifier of the disease. Here, we found that C9ORF72 forms a complex with the WDR41 and SMCR8 proteins to act as a GDP/GTP exchange factor for RAB8a and RAB39b and to thereby control autophagic flux. Depletion of C9orf72 in neurons partly impairs autophagy and leads to accumulation of aggregates of TDP-43 and P62 proteins, which are histopathological hallmarks of ALS-FTD SMCR8 is phosphorylated by TBK1 and depletion of TBK1 can be rescued by phosphomimetic mutants of SMCR8 or by constitutively active RAB39b, suggesting that TBK1, SMCR8, C9ORF72, and RAB39b belong to a common pathway regulating autophagy. While depletion of C9ORF72 only has a partial deleterious effect on neuron survival, it synergizes with Ataxin-2 Q30x toxicity to induce motor neuron dysfunction and neuronal cell death. These results indicate that partial loss of function of C9ORF72 is not deleterious by itself but synergizes with Ataxin-2 toxicity, suggesting a double-hit pathological mechanism in ALS-FTD.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Ataxina-2/metabolismo , Autofagia , Demencia Frontotemporal/patología , Neuronas Motoras/fisiología , Péptidos/metabolismo , Proteínas/metabolismo , Proteína C9orf72 , Muerte Celular , Humanos , Neuronas Motoras/metabolismo
8.
Am J Hum Genet ; 98(3): 500-513, 2016 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-26942284

RESUMEN

Autosomal-recessive early-onset parkinsonism is clinically and genetically heterogeneous. The genetic causes of approximately 50% of autosomal-recessive early-onset forms of Parkinson disease (PD) remain to be elucidated. Homozygozity mapping and exome sequencing in 62 isolated individuals with early-onset parkinsonism and confirmed consanguinity followed by data mining in the exomes of 1,348 PD-affected individuals identified, in three isolated subjects, homozygous or compound heterozygous truncating mutations in vacuolar protein sorting 13C (VPS13C). VPS13C mutations are associated with a distinct form of early-onset parkinsonism characterized by rapid and severe disease progression and early cognitive decline; the pathological features were striking and reminiscent of diffuse Lewy body disease. In cell models, VPS13C partly localized to the outer membrane of mitochondria. Silencing of VPS13C was associated with lower mitochondrial membrane potential, mitochondrial fragmentation, increased respiration rates, exacerbated PINK1/Parkin-dependent mitophagy, and transcriptional upregulation of PARK2 in response to mitochondrial damage. This work suggests that loss of function of VPS13C is a cause of autosomal-recessive early-onset parkinsonism with a distinctive phenotype of rapid and severe progression.


Asunto(s)
Mitofagia/genética , Trastornos Parkinsonianos/genética , Proteínas Quinasas/genética , Proteínas/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Anciano , Animales , Células COS , Estudios de Casos y Controles , Consanguinidad , Femenino , Silenciador del Gen , Heterogeneidad Genética , Células HEK293 , Heterocigoto , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Trastornos Parkinsonianos/diagnóstico , Linaje , Fenotipo , Proteínas Quinasas/metabolismo , Proteínas/metabolismo , Reproducibilidad de los Resultados , Turquía , Ubiquitina-Proteína Ligasas/metabolismo
9.
Trends Genet ; 31(5): 263-73, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25869998

RESUMEN

Several genetic causes have been recently described for neurological diseases, increasing our knowledge of the common pathological mechanisms involved in these disorders. Mutation analysis has shown common causative factors for two major neurodegenerative disorders, ALS and FTD. Shared pathological and genetic markers as well as common neurological signs between these diseases have given rise to the notion of an ALS/FTD spectrum. This overlap among genetic factors causing ALS/FTD and the coincidence of mutated alleles (including causative, risk and modifier variants) have given rise to the notion of an oligogenic model of disease. In this review we summarize major advances in the elucidation of novel genetic factors in these diseases which have led to a better understanding of the common pathogenic factors leading to neurodegeneration.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Animales , Modelos Animales de Enfermedad , Variación Genética , Humanos , Patrón de Herencia , Factores de Riesgo , Investigación Biomédica Traslacional
11.
Hum Mol Genet ; 24(6): 1682-90, 2015 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-25410659

RESUMEN

Mutations in SQSTM1, encoding for the protein SQSTM1/p62, have been recently reported in 1-3.5% of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS/FTLD). Inclusions positive for SQSTM1/p62 have been detected in patients with neurodegenerative disorders, including ALS/FTLD. In order to investigate the pathogenic mechanisms induced by SQSTM1 mutations in ALS/FTLD, we developed a zebrafish model. Knock-down of the sqstm1 zebrafish ortholog, as well as impairment of its splicing, led to a specific phenotype, consisting of behavioral and axonal anomalies. Here, we report swimming deficits associated with shorter motor neuronal axons that could be rescued by the overexpression of wild-type human SQSTM1. Interestingly, no rescue of the loss-of-function phenotype was observed when overexpressing human SQSTM1 constructs carrying ALS/FTLD-related mutations. Consistent with its role in autophagy regulation, we found increased mTOR levels upon knock-down of sqstm1. Furthermore, treatment of zebrafish embryos with rapamycin, a known inhibitor of the mTOR pathway, yielded an amelioration of the locomotor phenotype in the sqstm1 knock-down model. Our results suggest that loss-of-function of SQSTM1 causes phenotypic features characterized by locomotor deficits and motor neuron axonal defects that are associated with a misregulation of autophagic processes.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Esclerosis Amiotrófica Lateral/genética , Degeneración Lobar Frontotemporal/genética , Locomoción/genética , Sirolimus/farmacología , Proteínas de Pez Cebra/genética , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Animales , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/tratamiento farmacológico , Técnicas de Silenciamiento del Gen , Locomoción/efectos de los fármacos , Fenotipo , Proteína Sequestosoma-1 , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
12.
Hum Mol Genet ; 24(23): 6624-39, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26362255

RESUMEN

Collagen VI (COLVI), a protein ubiquitously expressed in connective tissues, is crucial for structural integrity, cellular adhesion, migration and survival. Six different genes are recognized in mammalians, encoding six COLVI-chains that assemble as two 'short' (α1, α2) and one 'long' chain (theoretically any one of α3-6). In humans, defects in the most widely expressed heterotrimer (α123), due to mutations in the COL6A1-3 genes, cause a heterogeneous group of neuromuscular disorders, collectively termed COLVI-related muscle disorders. Little is known about the function(s) of the recently described α4-6 chains and no mutations have been detected yet. In this study, we characterized two novel COLVI long chains in zebrafish that are most homologous to the mammalian α4 chain; therefore, we named the corresponding genes col6a4a and col6a4b. These orthologues represent ancestors of the mammalian Col6a4-6 genes. By in situ hybridization and RT-qPCR, we unveiled a distinctive expression kinetics for col6a4b, compared with the other col6a genes. Using morpholino antisense oligonucleotides targeting col6a4a, col6a4b and col6a2, we modelled partial and complete COLVI deficiency, respectively. All morphant embryos presented altered muscle structure and impaired motility. While apoptosis was not drastically increased, autophagy induction was defective in all morphants. Furthermore, motoneuron axon growth was abnormal in these morphants. Importantly, some phenotypical differences emerged between col6a4a and col6a4b morphants, suggesting only partial functional redundancy. Overall, our results further confirm the importance of COLVI in zebrafish muscle development and may provide important clues for potential human phenotypes associated with deficiency of the recently described COLVI-chains.


Asunto(s)
Colágeno Tipo VI/metabolismo , Desarrollo de Músculos , Proteínas de Pez Cebra/metabolismo , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Colágeno Tipo VI/genética , Expresión Génica , Datos de Secuencia Molecular , Filogenia , Alineación de Secuencia , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
13.
Am J Hum Genet ; 92(2): 238-44, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23332916

RESUMEN

Spastic paraplegia 46 refers to a locus mapped to chromosome 9 that accounts for a complicated autosomal-recessive form of hereditary spastic paraplegia (HSP). With next-generation sequencing in three independent families, we identified four different mutations in GBA2 (three truncating variants and one missense variant), which were found to cosegregate with the disease and were absent in controls. GBA2 encodes a microsomal nonlysosomal glucosylceramidase that catalyzes the conversion of glucosylceramide to free glucose and ceramide and the hydrolysis of bile acid 3-O-glucosides. The missense variant was also found at the homozygous state in a simplex subject in whom no residual glucocerebrosidase activity of GBA2 could be evidenced in blood cells, opening the way to a possible measurement of this enzyme activity in clinical practice. The overall phenotype was a complex HSP with mental impairment, cataract, and hypogonadism in males associated with various degrees of corpus callosum and cerebellar atrophy on brain imaging. Antisense morpholino oligonucleotides targeting the zebrafish GBA2 orthologous gene led to abnormal motor behavior and axonal shortening/branching of motoneurons that were rescued by the human wild-type mRNA but not by applying the same mRNA containing the missense mutation. This study highlights the role of ceramide metabolism in HSP pathology.


Asunto(s)
Neuronas Motoras/patología , Paraplejía Espástica Hereditaria/enzimología , Paraplejía Espástica Hereditaria/genética , Proteínas de Pez Cebra/genética , beta-Glucosidasa/genética , Adolescente , Adulto , Anciano , Animales , Encéfalo/patología , Niño , Preescolar , Familia , Femenino , Glucosilceramidasa , Humanos , Lactante , Masculino , Persona de Mediana Edad , Mutación/genética , Neuroimagen , Linaje , Adulto Joven , Pez Cebra
14.
Hum Mol Genet ; 22(12): 2350-60, 2013 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23446633

RESUMEN

The mutations P56S and T46I in the gene encoding vesicle-associated membrane protein-associated protein B/C (VAPB) cause ALS8, a familial form of amyotrophic lateral sclerosis (ALS). Overexpression of mutant forms of VAPB leads to cytosolic aggregates, suggesting a gain of function of the mutant protein. However, recent work suggested that the loss of VAPB function could be the major mechanism leading to ALS8. Here, we used multiple genetic and experimental approaches to study whether VAPB loss of function might be sufficient to trigger motor neuron degeneration. In order to identify additional ALS-associated VAPB mutations, we screened the entire VAPB gene in a cohort of ALS patients and detected two mutations (A145V and S160Δ). To directly address the contribution of VAPB loss of function in ALS, we generated zebrafish and mouse models with either a decreased or a complete loss of Vapb expression. Vapb knockdown in zebrafish led to swimming deficits. Mice knocked-out for Vapb showed mild motor deficits after 18 months of age yet had innervated neuromuscular junctions (NMJs). Importantly, overexpression of VAPB mutations were unable to rescue the motor deficit caused by Vapb knockdown in zebrafish and failed to cause a toxic gain-of-function defect on their own. Thus, Vapb loss of function weakens the motor system of vertebrate animal models but is on its own unable to lead to a complete ALS phenotype. Our findings are consistent with the notion that VAPB mutations constitute a risk factor for motor neuron disease through a loss of VAPB function.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de la Membrana/metabolismo , Mutación Missense , Proteínas de Transporte Vesicular/metabolismo , Secuencia de Aminoácidos , Esclerosis Amiotrófica Lateral/genética , Animales , Secuencia de Bases , Estudios de Cohortes , Femenino , Humanos , Masculino , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Ratones Noqueados , Ratones Transgénicos , Datos de Secuencia Molecular , Alineación de Secuencia , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Pez Cebra
15.
Curr Opin Neurol ; 28(5): 455-61, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26356410

RESUMEN

PURPOSE OF REVIEW: The aim of this review is to refer to recent arguments supporting the existence of specific propagation mechanisms associated with spreading of neuron injury in amyotrophic lateral sclerosis (ALS). RECENT FINDINGS: Misfolded ALS-linked protein accumulation can induce aggregation of their native equivalent isoforms through a mechanism analogous to the infectious prion proteins initiation and its propagation. SUMMARY: Although ALS is clinically heterogeneous, a shared characteristic is the focal onset and the progressive extension to all body regions. Being viewed until now as just summation of the increased number of affected neurons, dispersion is now rather considered as the result of a seeded self-propagating process. A sequential regional spreading pattern is supported by the distribution of TDP-43 aggregates in ALS autopsy cases. Electrophysiology and advanced neuroimaging methods also recently provided some evidence for propagation of lesions both in the brain and spinal cord, more longitudinal studies being still needed. Lesions are supposed to spread cell-to-cell regionally or through connected neuronal pathway. At the molecular level, the prion-like spreading is an emerging mechanism hypothesis, but other machineries such as those that are in charge of dealing with misfolded proteins and secretion of deleterious peptides may be involved in the propagation of neuron loss. Deciphering the mechanisms underlying spreading of ALS symptoms is of crucial importance to better understand this neurodegenerative disease, build new and appropriate animal models and to define novel therapeutic targets.


Asunto(s)
Esclerosis Amiotrófica Lateral , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Humanos
16.
Ann Neurol ; 74(2): 180-7, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23720273

RESUMEN

OBJECTIVE: To define the role that repeat expansions of a GGGGCC hexanucleotide sequence of the C9orf72 gene play in the pathogenesis of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). A genetic model for ALS was developed to determine whether loss of function of the zebrafish orthologue of C9orf72 (zC9orf72) leads to abnormalities in neuronal development. METHODS: C9orf72 mRNA levels were quantified in brain and lymphoblasts derived from FTLD and ALS/FTLD patients and in zebrafish. Knockdown of the zC9orf72 was performed using 2 specific antisense morpholino oligonucleotides to block transcription. Quantifications of spontaneous swimming and tactile escape response, as well as measurements of axonal projections from the spinal cord, were performed. RESULTS: Significantly decreased expression of C9orf72 transcripts in brain and lymphoblasts was found in sporadic FTLD and ALS/FTLD patients with normal-size or expanded hexanucleotide repeats. The zC9orf72 is selectively expressed in the developing nervous system at developmental stages. Loss of function of the zC9orf72 transcripts causes both behavioral and cellular deficits related to locomotion without major morphological abnormalities. These deficits were rescued upon overexpression of human C9orf72 mRNA transcripts. INTERPRETATION: Our results indicate C9orf72 haploinsufficiency could be a contributing factor in the spectrum of ALS/FTLD neurodegenerative disorders. Loss of function of the zebrafish orthologue of zC9orf72 expression in zebrafish is associated with axonal degeneration of motor neurons that can be rescued by expressing human C9orf72 mRNA, highlighting the specificity of the induced phenotype. These results reveal a pathogenic consequence of decreased C9orf72 levels, supporting a loss of function mechanism of disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Degeneración Lobar Frontotemporal/genética , Actividad Motora/genética , Proteínas/genética , Proteínas de Pez Cebra/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Conducta Animal/fisiología , Proteína C9orf72 , Modelos Animales de Enfermedad , Degeneración Lobar Frontotemporal/patología , Humanos , Linfocitos/metabolismo , Linfocitos/patología , Pez Cebra , Proteínas de Pez Cebra/deficiencia
17.
PLoS Genet ; 7(8): e1002214, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21829392

RESUMEN

Mutations in the SOD1 and TARDBP genes have been commonly identified in Amyotrophic Lateral Sclerosis (ALS). Recently, mutations in the Fused in sarcoma gene (FUS) were identified in familial (FALS) ALS cases and sporadic (SALS) patients. Similarly to TDP-43 (coded by TARDBP gene), FUS is an RNA binding protein. Using the zebrafish (Danio rerio), we examined the consequences of expressing human wild-type (WT) FUS and three ALS-related mutations, as well as their interactions with TARDBP and SOD1. Knockdown of zebrafish Fus yielded a motor phenotype that could be rescued upon co-expression of wild-type human FUS. In contrast, the two most frequent ALS-related FUS mutations, R521H and R521C, unlike S57Δ, failed to rescue the knockdown phenotype, indicating loss of function. The R521H mutation caused a toxic gain of function when expressed alone, similar to the phenotype observed upon knockdown of zebrafish Fus. This phenotype was not aggravated by co-expression of both mutant human TARDBP (G348C) and FUS (R521H) or by knockdown of both zebrafish Tardbp and Fus, consistent with a common pathogenic mechanism. We also observed that WT FUS rescued the Tardbp knockdown phenotype, but not vice versa, suggesting that TARDBP acts upstream of FUS in this pathway. In addition we observed that WT SOD1 failed to rescue the phenotype observed upon overexpression of mutant TARDBP or FUS or upon knockdown of Tardbp or Fus; similarly, WT TARDBP or FUS also failed to rescue the phenotype induced by mutant SOD1 (G93A). Finally, overexpression of mutant SOD1 exacerbated the motor phenotype caused by overexpression of mutant FUS. Together our results indicate that TARDBP and FUS act in a pathogenic pathway that is independent of SOD1.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Modelos Genéticos , Proteína FUS de Unión a ARN/genética , Superóxido Dismutasa/genética , Esclerosis Amiotrófica Lateral/metabolismo , Animales , Proteínas de Unión al ADN/metabolismo , Epistasis Genética , Humanos , Actividad Motora/genética , Mutación/genética , Fenotipo , Proteína FUS de Unión a ARN/metabolismo , Superóxido Dismutasa/metabolismo , Superóxido Dismutasa-1 , Pez Cebra/genética , Pez Cebra/metabolismo
18.
Cells ; 13(8)2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38667299

RESUMEN

It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1ß. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.


Asunto(s)
Modelos Animales de Enfermedad , Epilepsias Mioclónicas , Microglía , Neuronas , Pez Cebra , Animales , Microglía/metabolismo , Microglía/patología , Epilepsias Mioclónicas/patología , Epilepsias Mioclónicas/genética , Epilepsias Mioclónicas/metabolismo , Epilepsias Mioclónicas/fisiopatología , Neuronas/metabolismo , Neuronas/patología , Canal de Sodio Activado por Voltaje NAV1.1/genética , Canal de Sodio Activado por Voltaje NAV1.1/metabolismo , Interleucina-1beta/metabolismo , Larva , Calcio/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
19.
Hum Mutat ; 34(6): 812-26, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23559573

RESUMEN

Mutations in the TAR DNA Binding Protein gene (TARDBP), encoding the protein TDP-43, were identified in amyotrophic lateral sclerosis (ALS) patients. Interestingly, TDP-43 positive inclusion bodies were first discovered in ubiquitin-positive, tau-negative ALS and frontotemporal dementia (FTD) inclusion bodies, and subsequently observed in the majority of neurodegenerative disorders. To date, 47 missense and one truncating mutations have been described in a large number of familial (FALS) and sporadic (SALS) patients. Fused in sarcoma (FUS) was found to be responsible for a previously identified ALS6 locus, being mutated in both FALS and SALS patients. TARDBP and FUS have a structural and functional similarity and most of mutations in both genes are also clustered in the C-terminus of the proteins. The molecular mechanisms through which mutant TDP-43 and FUS may cause motor neuron degeneration are not well understood. Both proteins play an important role in mRNA transport, axonal maintenance, and motor neuron development. Functional characterization of these mutations in in vitro and in vivo systems is helping to better understand how motor neuron degeneration occurs. This report summarizes the biological and clinical relevance of TARDBP and FUS mutations in ALS. All the data reviewed here have been submitted to a database based on the Leiden Open (source) Variation Database (LOVD) and is accessible online at www.lovd.nl/TARDBP, www.lovd.nl/FUS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteínas de Unión al ADN/genética , Mutación , Proteína FUS de Unión a ARN/genética , Esclerosis Amiotrófica Lateral/diagnóstico , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Epistasis Genética , Estudios de Asociación Genética , Humanos , Polimorfismo Genético , Proteína FUS de Unión a ARN/química , Proteína FUS de Unión a ARN/metabolismo
20.
Neurobiol Dis ; 55: 64-75, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23567652

RESUMEN

C. elegans and D. rerio expressing mutant TAR DNA Binding Protein 43 (TDP-43) are powerful in vivo animal models for the genetics and pharmacology of amyotrophic lateral sclerosis (ALS). Using these small-animal models of ALS, we previously identified methylene blue (MB) as a potent suppressor of TDP-43 toxicity. Consequently here we investigated how MB might exert its neuroprotective properties and found that it acts through reduction of the endoplasmic reticulum (ER) stress response. We tested other compounds known to be active in the ER unfolded protein response in worms and zebrafish expressing mutant human TDP-43 (mTDP-43). We identified three compounds: salubrinal, guanabenz and a new structurally related compound phenazine, which also reduced paralysis, neurodegeneration and oxidative stress in our mTDP-43 models. Using C. elegans genetics, we showed that all four compounds act as potent suppressors of mTDP-43 toxicity through reduction of the ER stress response. Interestingly, these compounds operate through different branches of the ER unfolded protein pathway to achieve a common neuroprotective action. Our results indicate that protein-folding homeostasis in the ER is an important target for therapeutic development in ALS and other TDP-43-related neurodegenerative diseases.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico/genética , Síndromes de Neurotoxicidad/genética , Síndromes de Neurotoxicidad/fisiopatología , Análisis de Varianza , Animales , Animales Modificados Genéticamente , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Cinamatos/farmacología , Cinamatos/uso terapéutico , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico/efectos de los fármacos , Reacción de Fuga/efectos de los fármacos , Reacción de Fuga/fisiología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Guanabenzo/farmacología , Guanabenzo/uso terapéutico , Humanos , Microinyecciones , Trastornos del Movimiento/tratamiento farmacológico , Trastornos del Movimiento/etiología , Mutación/genética , Neuronas/efectos de los fármacos , Neuronas/patología , Síndromes de Neurotoxicidad/tratamiento farmacológico , Síndromes de Neurotoxicidad/patología , Fenazinas , ARN Mensajero/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Tiourea/análogos & derivados , Tiourea/farmacología , Tiourea/uso terapéutico , Factores de Tiempo , Tacto/fisiología , Pez Cebra , Proteínas de Pez Cebra/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA