Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
BMC Genomics ; 23(1): 539, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35883037

RESUMEN

BACKGROUND: Long noncoding RNAs (lncRNAs) are emerging as a class of genes whose importance has yet to be fully realized. It is becoming clear that the primary function of lncRNAs is to regulate gene expression, and they do so through a variety of mechanisms that are critically tied to their subcellular localization. Although most lncRNAs are poorly understood, mapping lncRNA subcellular localization can provide a foundation for understanding these mechanisms. RESULTS: Here, we present an initial step toward uncovering the localization landscape of lncRNAs in the human retinal pigment epithelium (RPE) using high throughput RNA-Sequencing (RNA-Seq). To do this, we differentiated human induced pluripotent stem cells (iPSCs) into RPE, isolated RNA from nuclear and cytoplasmic fractions, and performed RNA-Seq on both. Furthermore, we investigated lncRNA localization changes that occur in response to oxidative stress. We discovered that, under normal conditions, most lncRNAs are seen in both the nucleus and the cytoplasm to a similar degree, but of the transcripts that are highly enriched in one compartment, far more are nuclear than cytoplasmic. Interestingly, under oxidative stress conditions, we observed an increase in lncRNA localization in both nuclear and cytoplasmic fractions. In addition, we found that nuclear localization was partially attributable to the presence of previously described nuclear retention motifs, while adenosine to inosine (A-to-I) RNA editing appeared to play a very minimal role. CONCLUSIONS: Our findings map lncRNA localization in the RPE and provide two avenues for future research: 1) how lncRNAs function in the RPE, and 2) how one environmental factor, in isolation, may potentially play a role in retinal disease pathogenesis through altered lncRNA localization.


Asunto(s)
Células Madre Pluripotentes Inducidas , ARN Largo no Codificante , Núcleo Celular/genética , Núcleo Celular/metabolismo , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Análisis de Secuencia de ARN
2.
Mol Vis ; 28: 340-351, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36338668

RESUMEN

Purpose: Nuclear retention is a mechanism whereby excess RNA transcripts are stored in the event that a cell needs to quickly respond to a stimulus; maintaining proper nuclear-to-cytoplasmic balance is important for cellular homeostasis and cell function. There are many mechanisms that are employed to determine whether to retain a transcript or export it to the cytoplasm, although the extent to which tissue or cell type, internal and external stressors, and disease pathogenesis affect this process is not yet clear. As the most biochemically active tissue in the body, the retina must mitigate endogenous and exogenous stressors to maintain cell health and tissue function. Oxidative stress, believed to contribute to the pathogenesis or progression of age-related macular degeneration (AMD) and inherited retinal dystrophies (IRDs), is produced both internally from biochemical processes as well as externally from environmental insult. Here, we evaluate the effect of oxidative stress on transcript localization in the retinal pigment epithelium (RPE), with specific focus on transcripts related to RPE function and disease. Methods: We performed poly(A) RNA sequencing on nuclear and cytoplasmic fractions from human induced pluripotent stem cell-derived retinal pigment epithelium (iPSC-RPE) cells exposed to hydrogen peroxide (H2O2), as well as on untreated controls. Results: Under normal conditions, the number of mRNA transcripts retained in the nucleus exceeded that found in studies on other tissues. Further, the nuclear-to-cytoplasmic ratio of transcripts was altered following oxidative stress, as was the retention of genes associated with AMD and IRDs, as well as those that are important for RPE physiology. Conclusions: These results provide a localization catalog of all expressed mRNA in iPSC-RPE under normal conditions and after exposure to H2O2, shedding light on the extent to which H2O2 alters transcript localization and potentially offering insight into one mechanism through which oxidative stress may contribute to the progression of visual disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Degeneración Macular , Humanos , Epitelio Pigmentado de la Retina/metabolismo , Peróxido de Hidrógeno/farmacología , Células Madre Pluripotentes Inducidas/metabolismo , Estrés Oxidativo , Degeneración Macular/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo
3.
Proc Natl Acad Sci U S A ; 112(13): E1559-68, 2015 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-25775587

RESUMEN

As with other retinal cell types, retinal ganglion cells (RGCs) arise from multipotent retinal progenitor cells (RPCs), and their formation is regulated by a hierarchical gene-regulatory network (GRN). Within this GRN, three transcription factors--atonal homolog 7 (Atoh7), POU domain, class 4, transcription factor 2 (Pou4f2), and insulin gene enhancer protein 1 (Isl1)--occupy key node positions at two different stages of RGC development. Atoh7 is upstream and is required for RPCs to gain competence for an RGC fate, whereas Pou4f2 and Isl1 are downstream and regulate RGC differentiation. However, the genetic and molecular basis for the specification of the RGC fate, a key step in RGC development, remains unclear. Here we report that ectopic expression of Pou4f2 and Isl1 in the Atoh7-null retina using a binary knockin-transgenic system is sufficient for the specification of the RGC fate. The RGCs thus formed are largely normal in gene expression, survive to postnatal stages, and are physiologically functional. Our results indicate that Pou4f2 and Isl1 compose a minimally sufficient regulatory core for the RGC fate. We further conclude that during development a core group of limited transcription factors, including Pou4f2 and Isl1, function downstream of Atoh7 to determine the RGC fate and initiate RGC differentiation.


Asunto(s)
Linaje de la Célula , Regulación del Desarrollo de la Expresión Génica , Proteínas de Homeodominio/metabolismo , Proteínas con Homeodominio LIM/metabolismo , Células Ganglionares de la Retina/metabolismo , Factor de Transcripción Brn-3B/metabolismo , Factores de Transcripción/metabolismo , Alelos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Ciclo Celular , Diferenciación Celular , Sistema Nervioso Central/metabolismo , Electrofisiología , Femenino , Hibridación in Situ , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Retina/embriología , Retina/metabolismo , Células Madre/citología
4.
J Neurosci ; 33(32): 13053-65, 13065a, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23926259

RESUMEN

Horizontal cells are interneurons that synapse with photoreceptors in the outer retina. Their genesis during development is subject to regulation by transcription factors in a hierarchical manner. Previously, we showed that Onecut 1 (Oc1), an atypical homeodomain transcription factor, is expressed in developing horizontal cells (HCs) and retinal ganglion cells (RGCs) in the mouse retina. Herein, by knocking out Oc1 specifically in the developing retina, we show that the majority (∼80%) of HCs fail to form during early retinal development, implying that Oc1 is essential for HC genesis. However, no other retinal cell types, including RGCs, were affected in the Oc1 knock-out. Analysis of the genetic relationship between Oc1 and other transcription factor genes required for HC development revealed that Oc1 functions downstream of FoxN4, in parallel with Ptf1a, but upstream of Lim1 and Prox1. By in utero electroporation, we found that Oc1 and Ptf1a together are not only essential, but also sufficient for determination of HC fate. In addition, the synaptic connections in the outer plexiform layer are defective in Oc1-null mice, and photoreceptors undergo age-dependent degeneration, indicating that HCs are not only an integral part of the retinal circuitry, but also are essential for the survival of photoreceptors. In sum, these results demonstrate that Oc1 is a critical determinant of HC fate, and reveal that HCs are essential for photoreceptor viability, retinal integrity, and normal visual function.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Factor Nuclear 6 del Hepatocito/metabolismo , Neurogénesis/genética , Retina/citología , Células Horizontales de la Retina/metabolismo , Animales , Recuento de Células , Diferenciación Celular/genética , Supervivencia Celular , Embrión de Mamíferos , Proteínas del Ojo/genética , Proteínas Fluorescentes Verdes/genética , Factor Nuclear 6 del Hepatocito/genética , Proteínas de Homeodominio/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Vías Nerviosas/metabolismo , Vías Nerviosas/ultraestructura , Neuroglía/metabolismo , Neuroglía/fisiología , Neuronas/clasificación , Neuronas/metabolismo , Neuronas/ultraestructura , Proteína Quinasa C-alfa/metabolismo , Retina/embriología , Células Horizontales de la Retina/ultraestructura , Sinapsis/metabolismo , Sinapsis/ultraestructura , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteína Homeobox SIX3
5.
Cell Death Discov ; 9(1): 242, 2023 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-37443108

RESUMEN

TNFRSF10A (tumor necrosis factor receptor superfamily member 10A) encodes a cell surface receptor protein involved in apoptotic, necroptotic, and inflammatory pathways. Dysregulation of TNFRSF10A has been implicated in sensitization to apoptosis and to the development of multiple diseases, yet little is known of the AC100861.1 long noncoding RNA (lncRNA) that lies head-to-head with TNFRSF10A. Given its genomic positioning, we sought to investigate the function of AC100861.1, focusing on its potential relationship with TNFRSF10A and the role it may play in death receptor signaling. Using knockdown and overexpression strategies, we probed cell viability and examined transcript and protein-level changes in key genes involved in apoptosis, necroptosis, and inflammation. Decreased cell viability was observed upon TNFRSF10A overexpression, regardless of whether the cells were subjected to the chemical stressor tunicamycin. Similarly, overexpression of AC100861.1 led to increased cell death, with a further increase observed under conditions of cellular stress. Knockdown of TNFRSF10A increased cell death only when the cells were stressed, and AC100861.1 knockdown exhibited no effect on cell death. Neither knockdown nor overexpression of either of these genes greatly affected the expression of the other. Manipulating AC100861.1, however, led to marked changes in the expression of genes involved in necroptosis and inflammatory cell-signaling pathways. Additionally, RNA fluorescence in situ hybridization (RNA-FISH) revealed that the AC100861.1 transcript is localized primarily to the cytoplasm. Together, these data suggest that AC100861.1 may have a role in regulating necroptotic and inflammatory signaling pathways and that this function is separate from changes in TNFRSF10A expression. Given the importance of this genomic locus for cell survival, these data provide insight into the function of a poorly understood lncRNA with potential implications regarding disease pathology and treatment.

6.
PLoS One ; 9(8): e104617, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25127478

RESUMEN

Formation of new synapses or maintenance of existing synapses requires the delivery of synaptic components from the soma to the nerve termini via axonal transport. One pathway that is important in synapse formation, maintenance and function of the Drosophila neuromuscular junction (NMJ) is the bone morphogenetic protein (BMP)-signaling pathway. Here we show that perturbations in axonal transport directly disrupt BMP signaling, as measured by its downstream signal, phospho Mad (p-Mad). We found that components of the BMP pathway genetically interact with both kinesin-1 and dynein motor proteins. Thick vein (TKV) vesicle motility was also perturbed by reductions in kinesin-1 or dynein motors. Interestingly, dynein mutations severely disrupted p-Mad signaling while kinesin-1 mutants showed a mild reduction in p-Mad signal intensity. Similar to mutants in components of the BMP pathway, both kinesin-1 and dynein motor protein mutants also showed synaptic morphological defects. Strikingly TKV motility and p-Mad signaling were disrupted in larvae expressing two human disease proteins; expansions of glutamine repeats (polyQ77) and human amyloid precursor protein (APP) with a familial Alzheimer's disease (AD) mutation (APPswe). Consistent with axonal transport defects, larvae expressing these disease proteins showed accumulations of synaptic proteins along axons and synaptic abnormalities. Taken together our results suggest that similar to the NGF-TrkA signaling endosome, a BMP signaling endosome that directly interacts with molecular motors likely exist. Thus problems in axonal transport occurs early, perturbs BMP signaling, and likely contributes to the synaptic abnormalities observed in these two diseases.


Asunto(s)
Transporte Axonal/fisiología , Proteínas Morfogenéticas Óseas/genética , Drosophila melanogaster/metabolismo , Enfermedades Neurodegenerativas/genética , Transmisión Sináptica/fisiología , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Animales Modificados Genéticamente , Transporte Axonal/genética , Proteínas Morfogenéticas Óseas/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dineínas/genética , Dineínas/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Neuronas Motoras/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Unión Neuromuscular/patología , Péptidos/metabolismo , Transducción de Señal , Sinapsis/genética , Sinapsis/metabolismo , Transmisión Sináptica/genética , Factores de Transcripción/metabolismo
7.
J Vis Exp ; (46)2010 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-21206460

RESUMEN

The Drosophila embryo is an attractive model system for investigating the cellular and molecular basis of neuronal development. Here we describe the procedure for the visualization of Drosophila embryonic nervous system using antibodies to neuronal proteins. Since the entire embryonic peripheral nervous and central nervous systems are well characterized at the level of individual cells (Dambly-Chaudière et al., 1986; Bodmer et al., 1987; Bodmer et al., 1989), any aberrations to these systems can be easily identified using antibodies to different neuronal proteins. The developing embryos are collected at certain times to ensure that the embryos are in the proper developmental stages for visualization. After collection, the outer layers of the embryo, the chorion membrane and the vitelline envelope that surrounds the embryo, are removed before fixation. Embryos are then incubated with neuronal antibodies and visualized using fluorescently labeled secondary antibodies. Embryos at stages 12-17 are visualized to access the embryonic nervous system. At stage 12 the CNS germ band starts shortening and by stage 15 the definitive pattern of the commissure has been achieved. By stage 17 the CNS contracts and the PNS is fully developed (Campos-Ortega et al. 1985). Thus changes in the pattern of the PNS and CNS can be easily observed during these developmental stages.


Asunto(s)
Drosophila/embriología , Sistema Nervioso/embriología , Animales , Microscopía Fluorescente/métodos , Proteínas del Tejido Nervioso/análisis , Sistema Nervioso/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA