Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 759: 143429, 2021 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-33162148

RESUMEN

Mountain regions in arid and semi-arid climates, such as California, are considered particularly sensitive to climate change because global warming is expected to alter snowpack storage and related surface water supply. It is therefore important to accurately capture snowmelt processes in watershed models for climate change impact assessment. In this study we use the Soil and Water Assessment Tool (SWAT) to estimate projected changes in snowpack and streamflow in four alpine tributaries to the agriculturally important but less studied southern Central Valley, California. Watershed responses are evaluated for four CMIP5 climate models (HadGEM_ES, CNRM-CM5, CanESM2 and MIROC5) and two emission scenarios (RCP 4.5 and RCP 8.5) for 2020-2099. SWAT models are calibrated following a dual-objective, lumped calibration approach with an automatic calibration against observed streamflow (stage 1) and a manual calibration against reconstructed Parallel Energy Balance (ParBal) snow water equivalent (SWE) data (stage 2). Results indicate that under a warming climate, peak streamflow is expected to increase 0.5-4 times in magnitude in the coming decades and to arrive 2-4 months earlier in the year because of earlier snowmelt. In the foreseeable future, snow cover will reduce gradually in the lower elevations and diminish at higher rates at higher elevation towards the end of the 21st century. Surface water supply is predicted to increase in the southern Central Valley under the evaluated scenarios but increased temporal variability (wetter wet seasons and drier dry seasons) will create new challenges for managing supply. The study further highlights that the use of remote sensing based, reconstructed SWE data could fill the current gap of limited in-situ SWE observations to improve the snow calibration of SWAT to better predict climate change impacts in semi-arid, snow-dominated watersheds.

2.
Ground Water ; 49(6): 859-65, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21275983

RESUMEN

An open problem that arises when using modern iterative linear solvers, such as the preconditioned conjugate gradient method or Generalized Minimum RESidual (GMRES) method, is how to choose the residual tolerance in the linear solver to be consistent with the tolerance on the solution error. This problem is especially acute for integrated groundwater models, which are implicitly coupled to another model, such as surface water models, and resolve both multiple scales of flow and temporal interaction terms, giving rise to linear systems with variable scaling. This article uses the theory of "forward error bound estimation" to explain the correspondence between the residual error in the preconditioned linear system and the solution error. Using examples of linear systems from models developed by the US Geological Survey and the California State Department of Water Resources, we observe that this error bound guides the choice of a practical measure for controlling the error in linear systems. We implemented a preconditioned GMRES algorithm and benchmarked it against the Successive Over-Relaxation (SOR) method, the most widely known iterative solver for nonsymmetric coefficient matrices. With forward error control, GMRES can easily replace the SOR method in legacy groundwater modeling packages, resulting in the overall simulation speedups as large as 7.74×. This research is expected to broadly impact groundwater modelers through the demonstration of a practical and general approach for setting the residual tolerance in line with the solution error tolerance and presentation of GMRES performance benchmarking results.


Asunto(s)
Agua Subterránea , Modelos Teóricos , Algoritmos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA