Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem Lett ; 28(5): 922-925, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29433927

RESUMEN

Nicotinamide N-methyltransferase (NNMT) has been linked to obesity and diabetes. We have identified a novel nicotinamide (NA) analog, compound 12 that inhibited NNMT enzymatic activity and reduced the formation of 1-methyl-nicotinamide (MNA), the primary metabolite of NA by ∼80% at 2 h when dosed in mice orally at 50 mg/kg.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Niacinamida/farmacología , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Humanos , Estructura Molecular , Niacinamida/síntesis química , Niacinamida/química , Nicotinamida N-Metiltransferasa/metabolismo , Relación Estructura-Actividad
2.
Sci Rep ; 12(1): 15440, 2022 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-36104373

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is a metabolic regulator that catalyzes the methylation of nicotinamide (Nam) using the co-factor S-adenosyl-L-methionine to form 1-methyl-nicotinamide (MNA). Overexpression of NNMT and the presence of the active metabolite MNA is associated with a number of diseases including metabolic disorders. We conducted a high-throughput screening campaign that led to the identification of a tricyclic core as a potential NNMT small molecule inhibitor series. Elaborate medicinal chemistry efforts were undertaken and hundreds of analogs were synthesized to understand the structure activity relationship and structure property relationship of this tricyclic series. A lead molecule, JBSNF-000028, was identified that inhibits human and mouse NNMT activity, reduces MNA levels in mouse plasma, liver and adipose tissue, and drives insulin sensitization, glucose modulation and body weight reduction in a diet-induced obese mouse model of diabetes. The co-crystal structure showed that JBSNF-000028 binds below a hairpin structural motif at the nicotinamide pocket and stacks between Tyr-204 (from Hairpin) and Leu-164 (from central domain). JBSNF-000028 was inactive against a broad panel of targets related to metabolism and safety. Interestingly, the improvement in glucose tolerance upon treatment with JBSNF-000028 was also observed in NNMT knockout mice with diet-induced obesity, pointing towards the glucose-normalizing effect that may go beyond NNMT inhibition. JBSNF-000028 can be a potential therapeutic option for metabolic disorders and developmental studies are warranted.


Asunto(s)
Enfermedades Metabólicas , Nicotinamida N-Metiltransferasa , Animales , Humanos , Ratones , Glucosa , Enfermedades Metabólicas/tratamiento farmacológico , Niacinamida/metabolismo , Niacinamida/farmacología , Nicotinamida N-Metiltransferasa/metabolismo , Obesidad/tratamiento farmacológico
3.
Sci Rep ; 8(1): 3660, 2018 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-29483571

RESUMEN

Nicotinamide N-methyltransferase (NNMT) is a cytosolic enzyme that catalyzes the transfer of a methyl group from the co-factor S-adenosyl-L-methionine (SAM) onto the substrate, nicotinamide (NA) to form 1-methyl-nicotinamide (MNA). Higher NNMT expression and MNA concentrations have been associated with obesity and type-2 diabetes. Here we report a small molecule analog of NA, JBSNF-000088, that inhibits NNMT activity, reduces MNA levels and drives insulin sensitization, glucose modulation and body weight reduction in animal models of metabolic disease. In mice with high fat diet (HFD)-induced obesity, JBSNF-000088 treatment caused a reduction in body weight, improved insulin sensitivity and normalized glucose tolerance to the level of lean control mice. These effects were not seen in NNMT knockout mice on HFD, confirming specificity of JBSNF-000088. The compound also improved glucose handling in ob/ob and db/db mice albeit to a lesser extent and in the absence of weight loss. Co-crystal structure analysis revealed the presence of the N-methylated product of JBSNF-000088 bound to the NNMT protein. The N-methylated product was also detected in the plasma of mice treated with JBSNF-000088. Hence, JBSNF-000088 may act as a slow-turnover substrate analog, driving the observed metabolic benefits.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Enfermedades Metabólicas/tratamiento farmacológico , Enfermedades Metabólicas/enzimología , Nicotinamida N-Metiltransferasa/metabolismo , Animales , Peso Corporal/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/enzimología , Dieta Alta en Grasa/efectos adversos , Masculino , Ratones , Ratones Endogámicos C57BL , Nicotinamida N-Metiltransferasa/antagonistas & inhibidores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA