Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
J Biol Chem ; 300(6): 107406, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38782208

RESUMEN

The DNA mismatch repair (MMR) system promotes genome stability and protects humans from certain types of cancer. Its primary function is the correction of DNA polymerase errors. MutLα is an important eukaryotic MMR factor. We have examined the contributions of MutLα to maintaining genome stability. We show here that loss of MutLα in yeast increases the genome-wide mutation rate by ∼130-fold and generates a genome-wide mutation spectrum that consists of small indels and base substitutions. We also show that loss of yeast MutLα leads to error-prone MMR that produces T > C base substitutions in 5'-ATA-3' sequences. In agreement with this finding, our examination of human whole-genome DNA sequencing data has revealed that loss of MutLα in induced pluripotent stem cells triggers error-prone MMR that leads to the formation of T > C mutations in 5'-NTN-3' sequences. Our further analysis has shown that MutLα-independent MMR plays a role in suppressing base substitutions in N3 homopolymeric runs. In addition, we describe that MutLα preferentially protects noncoding DNA from mutations. Our study defines the contributions of MutLα-dependent and independent mechanisms to genome-wide MMR.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteínas MutL , Mutación , Saccharomyces cerevisiae , Humanos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas MutL/metabolismo , Proteínas MutL/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Inestabilidad Genómica , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología
2.
Proc Natl Acad Sci U S A ; 119(22): e2121406119, 2022 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-35622890

RESUMEN

In eukaryotes, the origin recognition complex (ORC) is required for the initiation of DNA replication. The smallest subunit of ORC, Orc6, is essential for prereplication complex (pre-RC) assembly and cell viability in yeast and for cytokinesis in metazoans. However, unlike other ORC components, the role of human Orc6 in replication remains to be resolved. Here, we identify an unexpected role for hOrc6, which is to promote S-phase progression after pre-RC assembly and DNA damage response. Orc6 localizes at the replication fork and is an accessory factor of the mismatch repair (MMR) complex. In response to oxidative damage during S phase, often repaired by MMR, Orc6 facilitates MMR complex assembly and activity, without which the checkpoint signaling is abrogated. Mechanistically, Orc6 directly binds to MutSα and enhances the chromatin-association of MutLα, thus enabling efficient MMR. Based on this, we conclude that hOrc6 plays a fundamental role in genome surveillance during S phase.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Complejo de Reconocimiento del Origen , Fase S , Proteínas de Unión al ADN/metabolismo , Humanos , Proteínas MutL/metabolismo , Complejo de Reconocimiento del Origen/genética , Complejo de Reconocimiento del Origen/metabolismo , Unión Proteica
3.
J Biol Chem ; 299(5): 104705, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059180

RESUMEN

The DNA mismatch repair (MMR) system is a major DNA repair system that suppresses both inherited and sporadic cancers in humans. In eukaryotes, the MutSα-dependent and MutSß-dependent MMR pathways correct DNA polymerase errors. Here, we investigated these two pathways on a whole genome level in Saccharomyces cerevisiae. We found that inactivation of MutSα-dependent MMR increases the genome-wide mutation rate by ∼17-fold and loss of MutSß-dependent MMR elevates the genome-wide mutation rate by ∼4-fold. We also found that MutSα-dependent MMR does not show a preference for protecting coding or noncoding DNA from mutations, whereas MutSß-dependent MMR preferentially protects noncoding DNA from mutations. The most frequent mutations in the msh6Δ strain are C>T transitions, whereas 1- to 6-bp deletions are the most common genetic alterations in the msh3Δ strain. Strikingly, MutSα-dependent MMR is more important than MutSß-dependent MMR for protection from 1-bp insertions, while MutSß-dependent MMR has a more critical role in the defense against 1-bp deletions and 2- to 6-bp indels. We also determined that a mutational signature of yeast MSH6 loss is similar to mutational signatures of human MMR deficiency. Furthermore, our analysis showed that compared to other 5'-NCN-3' trinucleotides, 5'-GCA-3' trinucleotides are at the highest risk of accumulating C>T transitions at the central position in the msh6Δ cells and that the presence of a G/A base at the -1 position is important for the efficient MutSα-dependent suppression of C>T transitions. Our results highlight key differences between the roles of the MutSα-dependent and MutSß-dependent MMR pathways.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , ADN , Reparación del ADN , Proteínas de Unión al ADN/metabolismo , Mutación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo
4.
J Biol Chem ; 298(4): 101831, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35300981

RESUMEN

The DNA mismatch repair (MMR) system is a major DNA repair system that corrects DNA replication errors. In eukaryotes, the MMR system functions via mechanisms both dependent on and independent of exonuclease 1 (EXO1), an enzyme that has multiple roles in DNA metabolism. Although the mechanism of EXO1-dependent MMR is well understood, less is known about EXO1-independent MMR. Here, we provide genetic and biochemical evidence that the DNA2 nuclease/helicase has a role in EXO1-independent MMR. Biochemical reactions reconstituted with purified human proteins demonstrated that the nuclease activity of DNA2 promotes an EXO1-independent MMR reaction via a mismatch excision-independent mechanism that involves DNA polymerase δ. We show that DNA polymerase ε is not able to replace DNA polymerase δ in the DNA2-promoted MMR reaction. Unlike its nuclease activity, the helicase activity of DNA2 is dispensable for the ability of the protein to enhance the MMR reaction. Further examination established that DNA2 acts in the EXO1-independent MMR reaction by increasing the strand-displacement activity of DNA polymerase δ. These data reveal a mechanism for EXO1-independent mismatch repair.


Asunto(s)
ADN Helicasas , Reparación de la Incompatibilidad de ADN , ADN Helicasas/genética , ADN Helicasas/metabolismo , Reparación de la Incompatibilidad de ADN/genética , ADN Polimerasa III/metabolismo , Humanos
5.
Proc Natl Acad Sci U S A ; 117(7): 3535-3542, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015124

RESUMEN

MutL proteins are ubiquitous and play important roles in DNA metabolism. MutLγ (MLH1-MLH3 heterodimer) is a poorly understood member of the eukaryotic family of MutL proteins that has been implicated in triplet repeat expansion, but its action in this deleterious process has remained unknown. In humans, triplet repeat expansion is the molecular basis for ∼40 neurological disorders. In addition to MutLγ, triplet repeat expansion involves the mismatch recognition factor MutSß (MSH2-MSH3 heterodimer). We show here that human MutLγ is an endonuclease that nicks DNA. Strikingly, incision of covalently closed, relaxed loop-containing DNA by human MutLγ is promoted by MutSß and targeted to the strand opposite the loop. The resulting strand break licenses downstream events that lead to a DNA expansion event in human cell extracts. Our data imply that the mammalian MutLγ is a unique endonuclease that can initiate triplet repeat DNA expansions.


Asunto(s)
Homólogo 1 de la Proteína MutL/metabolismo , Proteínas MutL/metabolismo , Reparación de la Incompatibilidad de ADN , Dimerización , Endonucleasas/química , Endonucleasas/genética , Endonucleasas/metabolismo , Humanos , Homólogo 1 de la Proteína MutL/química , Homólogo 1 de la Proteína MutL/genética , Proteínas MutL/química , Proteínas MutL/genética , Expansión de Repetición de Trinucleótido
6.
J Biol Chem ; 295(41): 14203-14213, 2020 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-32796030

RESUMEN

Replication protein A (RPA), a major eukaryotic ssDNA-binding protein, is essential for all metabolic processes that involve ssDNA, including DNA replication, repair, and damage signaling. To perform its functions, RPA binds ssDNA tightly. In contrast, it was presumed that RPA binds RNA weakly. However, recent data suggest that RPA may play a role in RNA metabolism. RPA stimulates RNA-templated DNA repair in vitro and associates in vivo with R-loops, the three-stranded structures consisting of an RNA-DNA hybrid and the displaced ssDNA strand. R-loops are common in the genomes of pro- and eukaryotes, including humans, and may play an important role in transcription-coupled homologous recombination and DNA replication restart. However, the mechanism of R-loop formation remains unknown. Here, we investigated the RNA-binding properties of human RPA and its possible role in R-loop formation. Using gel-retardation and RNA/DNA competition assays, we found that RPA binds RNA with an unexpectedly high affinity (KD ≈ 100 pm). Furthermore, RPA, by forming a complex with RNA, can promote R-loop formation with homologous dsDNA. In reconstitution experiments, we showed that human DNA polymerases can utilize RPA-generated R-loops for initiation of DNA synthesis, mimicking the process of replication restart in vivo These results demonstrate that RPA binds RNA with high affinity, supporting the role of this protein in RNA metabolism and suggesting a mechanism of genome maintenance that depends on RPA-mediated DNA replication restart.


Asunto(s)
Estructuras R-Loop , ARN/química , Proteína de Replicación A/química , ADN/biosíntesis , ADN/química , Replicación del ADN , Humanos , Unión Proteica , ARN/metabolismo , Proteína de Replicación A/metabolismo
7.
Proc Natl Acad Sci U S A ; 114(19): 4930-4935, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439008

RESUMEN

Eukaryotic MutLα (mammalian MLH1-PMS2 heterodimer; MLH1-PMS1 in yeast) functions in early steps of mismatch repair as a latent endonuclease that requires a mismatch, MutSα/ß, and DNA-loaded proliferating cell nuclear antigen (PCNA) for activation. We show here that human PCNA and MutLα interact specifically but weakly in solution to form a complex of approximately 1:1 stoichiometry that depends on PCNA interaction with the C-terminal endonuclease domain of the MutLα PMS2 subunit. Amino acid substitution mutations within a PMS2 C-terminal 721QRLIAP motif attenuate or abolish human MutLα interaction with PCNA, as well as PCNA-dependent activation of MutLα endonuclease, PCNA- and DNA-dependent activation of MutLα ATPase, and MutLα function in in vitro mismatch repair. Amino acid substitution mutations within the corresponding yeast PMS1 motif (723QKLIIP) reduce or abolish mismatch repair in vivo. Coupling of a weak allele within this motif (723AKLIIP) with an exo1Δ null mutation, which individually confer only weak mutator phenotypes, inactivates mismatch repair in the yeast cell.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto , Proteínas MutL , Antígeno Nuclear de Célula en Proliferación , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Secuencias de Aminoácidos , Humanos , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/química , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/metabolismo , Proteínas MutL/química , Proteínas MutL/genética , Proteínas MutL/metabolismo , Antígeno Nuclear de Célula en Proliferación/química , Antígeno Nuclear de Célula en Proliferación/genética , Antígeno Nuclear de Célula en Proliferación/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
PLoS Genet ; 13(10): e1007074, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29069084

RESUMEN

Heterochromatin contains a significant part of nuclear DNA. Little is known about the mechanisms that govern heterochromatic DNA stability. We show here that in the yeast Saccharomyces cerevisiae (i) DNA mismatch repair (MMR) is required for the maintenance of heterochromatic DNA stability, (ii) MutLα (Mlh1-Pms1 heterodimer), MutSα (Msh2-Msh6 heterodimer), MutSß (Msh2-Msh3 heterodimer), and Exo1 are involved in MMR at heterochromatin, (iii) Exo1-independent MMR at heterochromatin frequently leads to the formation of Pol ζ-dependent mutations, (iv) MMR cooperates with the proofreading activity of Pol ε and the histone acetyltransferase Rtt109 in the maintenance of heterochromatic DNA stability, (v) repair of base-base mismatches at heterochromatin is less efficient than repair of base-base mismatches at euchromatin, and (vi) the efficiency of repair of 1-nt insertion/deletion loops at heterochromatin is similar to the efficiency of repair of 1-nt insertion/deletion loops at euchromatin.


Asunto(s)
Reparación de la Incompatibilidad de ADN , ADN de Hongos/química , Heterocromatina , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Secuencia de Bases , Daño del ADN , ADN de Hongos/genética , Exodesoxirribonucleasas/genética , Genes pol , Histona Acetiltransferasas/genética , Proteínas MutL/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/genética , Homología de Secuencia
9.
J Biol Chem ; 291(17): 9203-17, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-26945061

RESUMEN

DNA mismatch repair (MMR) is required for the maintenance of genome stability and protection of humans from several types of cancer. Human MMR occurs in the chromatin environment, but little is known about the interactions between MMR and the chromatin environment. Previous research has suggested that MMR coincides with replication-coupled assembly of the newly synthesized DNA into nucleosomes. The first step in replication-coupled nucleosome assembly is CAF-1-dependent histone (H3-H4)2 tetramer deposition, a process that involves ASF1A-H3-H4 complex. In this work we used reconstituted human systems to investigate interactions between MMR and CAF-1- and ASF1A-H3-H4-dependent histone (H3-H4)2 tetramer deposition. We have found that MutSα inhibits CAF-1- and ASF1A-H3-H4-dependent packaging of a DNA mismatch into a tetrasome. This finding supports the idea that MMR occurs before the DNA mismatch is packaged into the tetrasome. Our experiments have also revealed that CAF-1- and ASF1A-H3-H4-dependent deposition of the histone (H3-H4)2 tetramers does not interfere with MMR reactions. In addition, we have established that unnecessary degradation of the discontinuous strand that takes place in both DNA polymerase δ (Pol δ)- and DNA polymerase ϵ (Pol ϵ)-dependent MMR reactions is suppressed by CAF-1- and ASF1A-H3-H4-dependent deposition of the histone (H3-H4)2 tetramers. These data suggest that CAF-1- and ASF1A-H3-H4-dependent deposition of the histone (H3-H4)2 tetramers is compatible with MMR and protects the discontinuous daughter strand from unnecessary degradation by MMR machinery.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Factor 1 de Ensamblaje de la Cromatina/metabolismo , Reparación de la Incompatibilidad de ADN , ADN/metabolismo , Histonas/metabolismo , Complejos Multiproteicos/metabolismo , Animales , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Factor 1 de Ensamblaje de la Cromatina/química , Factor 1 de Ensamblaje de la Cromatina/genética , ADN/química , ADN/genética , Histonas/química , Histonas/genética , Humanos , Chaperonas Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Células Sf9 , Spodoptera , Factores de Transcripción
10.
J Biol Chem ; 291(53): 27298-27312, 2016 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-27872185

RESUMEN

The DNA mismatch repair (MMR) system corrects DNA mismatches in the genome. It is also required for the cytotoxic response of O6-methylguanine-DNA methyltransferase (MGMT)-deficient mammalian cells and yeast mgt1Δ rad52Δ cells to treatment with Sn1-type methylating agents, which produce cytotoxic O6-methylguanine (O6-mG) DNA lesions. Specifically, an activity of the MMR system causes degradation of irreparable O6-mG-T mispair-containing DNA, triggering cell death; this process forms the basis of treatments of MGMT-deficient cancers with Sn1-type methylating drugs. Recent research supports the view that degradation of irreparable O6-mG-T mispair-containing DNA by the MMR system and CAF-1-dependent packaging of the newly replicated DNA into nucleosomes are two concomitant processes that interact with each other. Here, we studied whether CAF-1 modulates the activity of the MMR system in the cytotoxic response to Sn1-type methylating agents. We found that CAF-1 suppresses the activity of the MMR system in the cytotoxic response of yeast mgt1Δ rad52Δ cells to the prototypic Sn1-type methylating agent N-methyl-N'-nitro-N-nitrosoguanidine. We also report evidence that in human MGMT-deficient cell-free extracts, CAF-1-dependent packaging of irreparable O6-mG-T mispair-containing DNA into nucleosomes suppresses its degradation by the MMR system. Taken together, these findings suggest that CAF-1-dependent incorporation of irreparable O6-mG-T mispair-containing DNA into nucleosomes suppresses its degradation by the MMR system, thereby defending the cell against killing by the Sn1-type methylating agent.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Reparación de la Incompatibilidad de ADN/efectos de los fármacos , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Ribonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Antibióticos Antineoplásicos/farmacología , Bleomicina/farmacología , Células HEK293 , Humanos , Metilnitronitrosoguanidina/farmacología , Saccharomyces cerevisiae/efectos de los fármacos
11.
J Biol Chem ; 290(40): 24051-65, 2015 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-26224637

RESUMEN

The DNA mismatch repair (MMR) system plays a major role in promoting genome stability and suppressing carcinogenesis. In this work, we investigated whether the MMR system is involved in Okazaki fragment maturation. We found that in the yeast Saccharomyces cerevisiae, the MMR system and the flap endonuclease Rad27 act in overlapping pathways that protect the nuclear genome from 1-bp insertions. In addition, we determined that purified yeast and human MutSα proteins recognize 1-nucleotide DNA and RNA flaps. In reconstituted human systems, MutSα, proliferating cell nuclear antigen, and replication factor C activate MutLα endonuclease to remove the flaps. ATPase and endonuclease mutants of MutLα are defective in the flap removal. These results suggest that the MMR system contributes to the removal of 1-nucleotide Okazaki fragment flaps.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Enzimas Reparadoras del ADN/metabolismo , ADN/genética , Proteína MutS de Unión a los Apareamientos Incorrectos del ADN/metabolismo , Proteína de Replicación C/metabolismo , ADN/química , Análisis Mutacional de ADN , Replicación del ADN , ADN Circular/química , Endonucleasas de ADN Solapado/genética , Proteínas Fúngicas/metabolismo , Eliminación de Gen , Genoma , Humanos , Proteínas MutL , Mutación , Ploidias , Antígeno Nuclear de Célula en Proliferación/metabolismo , Estructura Terciaria de Proteína , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidad por Sustrato
12.
PLoS Genet ; 9(10): e1003899, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24204308

RESUMEN

Mutations are a major driving force of evolution and genetic disease. In eukaryotes, mutations are produced in the chromatin environment, but the impact of chromatin on mutagenesis is poorly understood. Previous studies have determined that in yeast Saccharomyces cerevisiae, Rtt109-dependent acetylation of histone H3 on K56 is an abundant modification that is introduced in chromatin in S phase and removed by Hst3 and Hst4 in G2/M. We show here that the chromatin deacetylation on histone H3 K56 by Hst3 and Hst4 is required for the suppression of spontaneous gross chromosomal rearrangements, base substitutions, 1-bp insertions/deletions, and complex mutations. The rate of base substitutions in hst3Δ hst4Δ is similar to that in isogenic mismatch repair-deficient msh2Δ mutant. We also provide evidence that H3 K56 acetylation by Rtt109 is important for safeguarding DNA from small insertions/deletions and complex mutations. Furthermore, we reveal that both the deacetylation and acetylation on histone H3 K56 are involved in mutation avoidance mechanisms that cooperate with mismatch repair and the proofreading activities of replicative DNA polymerases in suppressing spontaneous mutagenesis. Our results suggest that cyclic acetylation and deacetylation of chromatin contribute to replication fidelity and play important roles in the protection of nuclear DNA from diverse spontaneous mutations.


Asunto(s)
Acetilación , Reparación de la Incompatibilidad de ADN/genética , Histona Desacetilasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Cromatina/genética , Cromatina/metabolismo , Aberraciones Cromosómicas , Replicación del ADN/genética , ADN Polimerasa Dirigida por ADN/genética , Inestabilidad Genómica/genética , Histona Desacetilasas/metabolismo , Histonas/genética , Mutación/genética , Fase S/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Proc Natl Acad Sci U S A ; 108(7): 2753-8, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21282622

RESUMEN

DNA mismatch repair (MMR) is a multifunctional process that promotes genetic stability and suppresses carcinogenesis. Correction of DNA replication errors is its major function. Despite the importance of MMR, its functioning in eukaryotes is not well understood. Here we report that human mismatch correction reactions in cell-free extracts occur during concomitant nick-dependent nucleosome assembly shaped by the replication histone chaperone CAF-I. Concomitant nucleosome assembly protects the discontinuous mismatch-containing strands from excessive degradation by MMR machinery. Such protection is also demonstrated in a defined purified system that supports both mismatch correction and CAF-I-dependent histone H3-H4 deposition reactions. In addition, we find that the mismatch recognition factor MutSα suppresses CAF-I-dependent histone H3-H4 deposition in a mismatch-dependent manner. We suggest that there is active crosstalk between MMR and replication-dependent nucleosome assembly during the correction of DNA replication errors and, as a result, the nascent mismatch-containing strands are degraded in a controlled manner.


Asunto(s)
Factor 1 de Ensamblaje de la Cromatina/metabolismo , Reparación de la Incompatibilidad de ADN/fisiología , ADN/metabolismo , Proteínas Recombinantes/genética , Southern Blotting , Línea Celular , Reparación de la Incompatibilidad de ADN/genética , Cartilla de ADN/genética , Proteínas de Unión al ADN/metabolismo , Electroforesis , Humanos , Nucleosomas/metabolismo , Factores de Transcripción
14.
bioRxiv ; 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38617288

RESUMEN

The DNA mismatch repair (MMR) system promotes genome stability and protects humans from certain types of cancer. Its primary function is the correction of DNA polymerase errors. MutLα is an important eukaryotic MMR factor. We have examined the contributions of MutLα to maintaining genome stability. We show here that loss of MutLα in yeast increases the genome-wide mutation rate by ~130-fold and generates a genome-wide mutation spectrum that consists of small indels and base substitutions. We also show that loss of yeast MutLα leads to error-prone MMR that produces T>C base substitutions in 5'-ATA-3' sequences. In agreement with this finding, our examination of human whole genome DNA sequencing data has revealed that loss of MutLα in induced pluripotent stem cells triggers error-prone MMR that leads to the formation of T>C mutations in 5'-NTN-3' sequences. Our further analysis has shown that MutLα-independent MMR plays a role in suppressing base substitutions in N3 homopolymeric runs. In addition, we describe that MutLα preferentially defends noncoding DNA from mutations. Our study defines the contributions of MutLα-dependent and independent mechanisms to genome-wide MMR.

15.
RNA ; 15(6): 1029-35, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19372537

RESUMEN

Pumilio controls a number of processes in eukaryotes, including the translational repression of hunchback (hb) mRNA in early Drosophila embryos. The Pumilio Puf domain binds to a pair of 32 nucleotide (nt) Nanos response elements (NRE1 and NRE2) within the 3' untranslated region of hb mRNA. Despite the elucidation of structures of human Pumilio Puf domain in complex with hb RNA elements, the nature of hb mRNA recognition remains unclear. In particular, the site that mediates regulation in vivo is significantly larger than the 8-10-nt RNA elements bound to single Puf molecules in crystal structures. Here we present biophysical and biochemical data that partially resolve the paradox. We show that each NRE is composed of two binding sites (Box A and Box B) and that two Puf domains can co-occupy a single NRE. The Puf domains have a higher affinity for the 3' Box B site than the 5' Box A site; binding to the intact NRE appears to be cooperative (at least in some experiments). We suggest that the 2 Pumilio:1 NRE complex is the functional regulatory unit in vivo.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Proteínas de Unión al ARN/metabolismo , Secuencias Reguladoras de Ácido Ribonucleico , Factores de Transcripción/genética , Animales , Secuencia de Bases , Sitios de Unión , Células Cultivadas , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Polarización de Fluorescencia , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Conformación de Ácido Nucleico , Proteínas de Unión al ARN/química , Elementos de Respuesta/genética
16.
DNA Repair (Amst) ; 38: 42-49, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26719141

RESUMEN

MutLα is a key component of the DNA mismatch repair system in eukaryotes. The DNA mismatch repair system has several genetic stabilization functions. Of these functions, DNA mismatch repair is the major one. The loss of MutLα abolishes DNA mismatch repair, thereby predisposing humans to cancer. MutLα has an endonuclease activity that is required for DNA mismatch repair. The endonuclease activity of MutLα depends on the DQHA(X)2E(X)4E motif which is a part of the active site of the nuclease. This motif is also present in many bacterial MutL and eukaryotic MutLγ proteins, DNA mismatch repair system factors that are homologous to MutLα. Recent studies have shown that yeast MutLγ and several MutL proteins containing the DQHA(X)2E(X)4E motif possess endonuclease activities. Here, we review the endonuclease activities of MutLα and its homologs in the context of DNA mismatch repair.


Asunto(s)
Reparación de la Incompatibilidad de ADN , Enzimas Reparadoras del ADN/metabolismo , Endonucleasas/metabolismo , Homología de Secuencia de Aminoácido , Animales , Humanos , Modelos Biológicos
17.
Cell Cycle ; 12(20): 3286-97, 2013 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-24036545

RESUMEN

Replication-coupled nucleosome assembly is a critical step in packaging newly synthesized DNA into chromatin. Previous studies have defined the importance of the histone chaperones CAF-1 and ASF1A, the replicative clamp PCNA, and the clamp loader RFC for the assembly of nucleosomes during DNA replication. Despite significant progress in the field, replication-coupled nucleosome assembly is not well understood. One of the complications in elucidating the mechanisms of replication-coupled nucleosome assembly is the lack of a defined system that faithfully recapitulates this important biological process in vitro. We describe here a defined system that assembles nucleosomal arrays in a manner dependent on the presence of CAF-1, ASF1A-H3-H4, H2A-H2B, PCNA, RFC, NAP1L1, ATP, and strand breaks. The loss of CAF-1 p48 subunit causes a strong defect in packaging DNA into nucleosomes by this system. We also show that the defined system forms nucleosomes on nascent DNA synthesized by the replicative polymerase δ. Thus, the developed system reproduces several key features of replication-coupled nucleosome assembly.


Asunto(s)
Ensamble y Desensamble de Cromatina , Nucleosomas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Ciclo Celular/aislamiento & purificación , Proteínas de Ciclo Celular/metabolismo , Citosol/metabolismo , ADN/genética , Empaquetamiento del ADN , Células HeLa , Histonas/aislamiento & purificación , Histonas/metabolismo , Humanos , Chaperonas Moleculares , Proteínas Recombinantes/aislamiento & purificación
18.
Development ; 134(8): 1519-27, 2007 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-17360772

RESUMEN

In the Drosophila embryo, Nanos and Pumilio collaborate to repress the translation of hunchback mRNA in the somatic cytoplasm. Both proteins are also required for repression of maternal Cyclin B mRNA in the germline; it has not been clear whether they act directly on Cyclin B mRNA, and if so, whether regulation in the presumptive somatic and germline cytoplasm proceeds by similar or fundamentally different mechanisms. In this report, we show that Pumilio and Nanos bind to an element in the 3' UTR to repress Cyclin B mRNA. Regulation of Cyclin B and hunchback differ in two significant respects. First, Pumilio is dispensable for repression of Cyclin B (but not hunchback) if Nanos is tethered via an exogenous RNA-binding domain. Nanos probably acts, at least in part, by recruiting the CCR4-Pop2-NOT deadenylase complex, interacting directly with the NOT4 subunit. Second, although Nanos is the sole spatially limiting factor for regulation of hunchback, regulation of Cyclin B requires another Oskar-dependent factor in addition to Nanos. Ectopic repression of Cyclin B in the presumptive somatic cytoplasm causes lethal nuclear division defects. We suggest that a requirement for two spatially restricted factors is a mechanism for ensuring that Cyclin B regulation is strictly limited to the germline.


Asunto(s)
Ciclina B/biosíntesis , Proteínas de Drosophila/fisiología , Drosophila/metabolismo , Oocitos/metabolismo , ARN Mensajero/biosíntesis , Proteínas de Unión al ARN/fisiología , Regiones no Traducidas 3' , Animales , Secuencia de Bases , Citoplasma/metabolismo , Proteínas de Unión al ADN/metabolismo , Drosophila/embriología , Proteínas de Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Datos de Secuencia Molecular , Unión Proteica , Biosíntesis de Proteínas , Proteínas de Unión al ARN/metabolismo , Ribonucleasas/metabolismo , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA