Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(2): 299-310.e18, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-35063072

RESUMEN

Ductal carcinoma in situ (DCIS) is a pre-invasive lesion that is thought to be a precursor to invasive breast cancer (IBC). To understand the changes in the tumor microenvironment (TME) accompanying transition to IBC, we used multiplexed ion beam imaging by time of flight (MIBI-TOF) and a 37-plex antibody staining panel to interrogate 79 clinically annotated surgical resections using machine learning tools for cell segmentation, pixel-based clustering, and object morphometrics. Comparison of normal breast with patient-matched DCIS and IBC revealed coordinated transitions between four TME states that were delineated based on the location and function of myoepithelium, fibroblasts, and immune cells. Surprisingly, myoepithelial disruption was more advanced in DCIS patients that did not develop IBC, suggesting this process could be protective against recurrence. Taken together, this HTAN Breast PreCancer Atlas study offers insight into drivers of IBC relapse and emphasizes the importance of the TME in regulating these processes.


Asunto(s)
Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/patología , Diferenciación Celular , Estudios de Cohortes , Progresión de la Enfermedad , Células Epiteliales/patología , Epitelio/patología , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Persona de Mediana Edad , Invasividad Neoplásica , Recurrencia Local de Neoplasia/patología , Fenotipo , Análisis de la Célula Individual , Células del Estroma/patología , Microambiente Tumoral
2.
Nature ; 619(7970): 595-605, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37468587

RESUMEN

Beginning in the first trimester, fetally derived extravillous trophoblasts (EVTs) invade the uterus and remodel its spiral arteries, transforming them into large, dilated blood vessels. Several mechanisms have been proposed to explain how EVTs coordinate with the maternal decidua to promote a tissue microenvironment conducive to spiral artery remodelling (SAR)1-3. However, it remains a matter of debate regarding which immune and stromal cells participate in these interactions and how this evolves with respect to gestational age. Here we used a multiomics approach, combining the strengths of spatial proteomics and transcriptomics, to construct a spatiotemporal atlas of the human maternal-fetal interface in the first half of pregnancy. We used multiplexed ion beam imaging by time-of-flight and a 37-plex antibody panel to analyse around 500,000 cells and 588 arteries within intact decidua from 66 individuals between 6 and 20 weeks of gestation, integrating this dataset with co-registered transcriptomics profiles. Gestational age substantially influenced the frequency of maternal immune and stromal cells, with tolerogenic subsets expressing CD206, CD163, TIM-3, galectin-9 and IDO-1 becoming increasingly enriched and colocalized at later time points. By contrast, SAR progression preferentially correlated with EVT invasion and was transcriptionally defined by 78 gene ontology pathways exhibiting distinct monotonic and biphasic trends. Last, we developed an integrated model of SAR whereby invasion is accompanied by the upregulation of pro-angiogenic, immunoregulatory EVT programmes that promote interactions with the vascular endothelium while avoiding the activation of maternal immune cells.


Asunto(s)
Intercambio Materno-Fetal , Trofoblastos , Útero , Femenino , Humanos , Embarazo , Arterias/fisiología , Decidua/irrigación sanguínea , Decidua/citología , Decidua/inmunología , Decidua/fisiología , Primer Trimestre del Embarazo/genética , Primer Trimestre del Embarazo/metabolismo , Primer Trimestre del Embarazo/fisiología , Trofoblastos/citología , Trofoblastos/inmunología , Trofoblastos/fisiología , Útero/irrigación sanguínea , Útero/citología , Útero/inmunología , Útero/fisiología , Intercambio Materno-Fetal/genética , Intercambio Materno-Fetal/inmunología , Intercambio Materno-Fetal/fisiología , Factores de Tiempo , Proteómica , Perfilación de la Expresión Génica , Conjuntos de Datos como Asunto , Edad Gestacional
3.
Lab Invest ; 102(7): 762-770, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35351966

RESUMEN

Multiplexed ion beam imaging by time-of-flight (MIBI-TOF) is a form of mass spectrometry imaging that uses metal labeled antibodies and secondary ion mass spectrometry to image dozens of proteins simultaneously in the same tissue section. Working with the National Cancer Institute's (NCI) Cancer Immune Monitoring and Analysis Centers (CIMAC), we undertook a validation study, assessing concordance across a dozen serial sections of a tissue microarray of 21 samples that were independently processed and imaged by MIBI-TOF or single-plex immunohistochemistry (IHC) over 12 days. Pixel-level features were highly concordant across all 16 targets assessed in both staining intensity (R2 = 0.94 ± 0.04) and frequency (R2 = 0.95 ± 0.04). Comparison to digitized, single-plex IHC on adjacent serial sections revealed similar concordance (R2 = 0.85 ± 0.08) as well. Lastly, automated segmentation and clustering of eight cell populations found that cell frequencies between serial sections yielded an average correlation of R2 = 0.94 ± 0.05. Taken together, we demonstrate that MIBI-TOF, with well-vetted reagents and automated analysis, can generate consistent and quantitative annotations of clinically relevant cell states in archival human tissue, and more broadly, present a scalable framework for benchmarking multiplexed IHC approaches.


Asunto(s)
Diagnóstico por Imagen , Neoplasias , Anticuerpos , Diagnóstico por Imagen/métodos , Humanos , Inmunohistoquímica , Iones , Espectrometría de Masas/métodos
4.
Res Sq ; 2023 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-37398389

RESUMEN

Microglia are implicated in aging, neurodegeneration, and Alzheimer's disease (AD). Traditional, low-plex, imaging methods fall short of capturing in situ cellular states and interactions in the human brain. We utilized Multiplexed Ion Beam Imaging (MIBI) and data-driven analysis to spatially map proteomic cellular states and niches in healthy human brain, identifying a spectrum of microglial profiles, called the microglial state continuum (MSC). The MSC ranged from senescent-like to active proteomic states that were skewed across large brain regions and compartmentalized locally according to their immediate microenvironment. While more active microglial states were proximal to amyloid plaques, globally, microglia significantly shifted towards a, presumably, dysfunctional low MSC in the AD hippocampus, as confirmed in an independent cohort (n=26). This provides an in situ single cell framework for mapping human microglial states along a continuous, shifting existence that is differentially enriched between healthy brain regions and disease, reinforcing differential microglial functions overall.

5.
Nat Biotechnol ; 40(4): 555-565, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34795433

RESUMEN

A principal challenge in the analysis of tissue imaging data is cell segmentation-the task of identifying the precise boundary of every cell in an image. To address this problem we constructed TissueNet, a dataset for training segmentation models that contains more than 1 million manually labeled cells, an order of magnitude more than all previously published segmentation training datasets. We used TissueNet to train Mesmer, a deep-learning-enabled segmentation algorithm. We demonstrated that Mesmer is more accurate than previous methods, generalizes to the full diversity of tissue types and imaging platforms in TissueNet, and achieves human-level performance. Mesmer enabled the automated extraction of key cellular features, such as subcellular localization of protein signal, which was challenging with previous approaches. We then adapted Mesmer to harness cell lineage information in highly multiplexed datasets and used this enhanced version to quantify cell morphology changes during human gestation. All code, data and models are released as a community resource.


Asunto(s)
Aprendizaje Profundo , Algoritmos , Curaduría de Datos , Humanos , Procesamiento de Imagen Asistido por Computador/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA