Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 27(9)2022 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-35566229

RESUMEN

In this study, the curing kinetics of epoxy nanocomposites containing ultra-fine full-vulcanized acrylonitrile butadiene rubber nanoparticles (UFNBRP) at different concentrations of 0, 0.5, 1 and 1.5 wt.% was investigated. In addition, the effect of curing temperatures was studied based on the rheological method under isothermal conditions. The epoxy resin/UFNBRP nanocomposites were characterized via Fourier transform infrared spectroscopy (FTIR). FTIR analysis exhibited the successful preparation of epoxy resin/UFNBRP, due to the existence of the UFNBRP characteristic peaks in the final product spectrum. The morphological structure of the epoxy resin/UFNBRP nanocomposites was investigated by both field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM) studies. The FESEM and TEM studies showed UFNBRP had a spherical structure and was well dispersed in epoxy resin. The chemorheological analysis showed that due to the interactions between UFNBRP and epoxy resin, by increasing UFNBRP concentration at a constant temperature (65, 70 and 75 °C), the curing rate decreases at the gel point. Furthermore, both the curing kinetics modeling and chemorheological analysis demonstrated that the incorporation of 0.5% UFNBRP in epoxy resin matrix reduces the activation energy. The curing kinetic of epoxy resin/UFNBRP nanocomposite was best fitted with the Sestak-Berggren autocatalytic model.


Asunto(s)
Nanocompuestos , Nanopartículas , Elastómeros , Resinas Epoxi/química , Cinética , Nanocompuestos/química
2.
Int J Biol Macromol ; 281(Pt 4): 136535, 2024 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-39401620

RESUMEN

To suppress HepG2 liver cancer cells, a nanocarrier (NC) consisting of Fe3O4, Gelatin (G), and Starch (S) was synthesized and characterized for targeted delivery of Quercetin (QC) drug. The spectra obtained from X-ray diffraction (XRD) and Fourier transform infrared (FTIR) demonstrated that the nanoparticles (NP) in the NC are well-interconnected to each other and have formed a regular structure. Also, field emission scanning electron microscopy (FE-SEM) indicates a smooth and homogeneous surface of the synthesized NC. The results of the vibrating sample magnetometer (VSM) also corroborated the correctness of the synthesis of Fe3O4 NPs and Gelatin/Starch/Fe3O4@Quercetin NC (G/S/Fe3O4@QC) because the magnetic properties of Fe3O4 decreased with the addition of G/S@QC. Stability and particle size were determined by zeta potential and Dynamic light scattering (DLS). The percentage of drug loading and encapsulation efficiency of QC in the NC was 46.25 % and 87 %, respectively. QC profile release in acidic and natural environments showed controlled release and pH sensitivity of the NC. Cytotoxicity of L929 and HepG2 treated cells with the G/S/Fe3O4@QC was investigated by MTT staining, which agreed with the flow cytometry result. The results of Flowcytometry and MTT showed 43.5 % apoptosis and 42 % cytotoxicity in treated HepG2 cells by G/S/Fe3O4@QC, while it was not toxic to L929 normal cells. According to the results, G/S/Fe3O4@QC is a suitable NC for the targeted delivery of QC as a drug against HepG2 cancer cells.

3.
J Mater Sci Mater Med ; 24(8): 1939-49, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23665921

RESUMEN

A new strategy for the synthesis of thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles by an ionic-gelation method is presented. The synthetic approach was based on the utilization of 1,6-hexamethylene diisocyanate during cyclodextrin grafting onto carboxymethyl chitosan. The use of the 1,6-hexamethylene diisocyanate resulted in reactions between cyclodextrin and active sites at the C6-position of chitosan, and preserved amino groups of chitosan for subsequent reactions with thioglycolic acid, as the thiolating agent, and tripolyphosphate, as the gelling counterion. Various methods such as scanning electron microscopy, rheology and in vitro release studies were employed to exhibit significant features of the nanoparticles for mucosal albendazole delivery applications. It was found that the thiolated carboxymethyl chitosan-g-cyclodextrin nanoparticles prepared using an aqueous solution containing 1 wt% of tripolyphosphate and having 115.65 (µmol/g polymer) of grafted thiol groups show both the highest mucoadhesive properties and the highest albendazole entrapment efficiency. The latter was confirmed theoretically by calculating the enthalpy of mixing of albendazole in the above thiolated chitosan polymer.


Asunto(s)
Albendazol/administración & dosificación , Antihelmínticos/administración & dosificación , Quitosano/análogos & derivados , Ciclodextrinas/química , Nanopartículas/química , Vehículos Farmacéuticos/química , Compuestos de Sulfhidrilo/síntesis química , Albendazol/farmacocinética , Antihelmínticos/farmacocinética , Líquidos Corporales/metabolismo , Quitosano/química , Materiales Biocompatibles Revestidos/síntesis química , Materiales Biocompatibles Revestidos/química , Ciclodextrinas/síntesis química , Composición de Medicamentos/métodos , Humanos , Secreciones Intestinales/metabolismo , Ensayo de Materiales , Vehículos Farmacéuticos/síntesis química , Compuestos de Sulfhidrilo/química
4.
Int J Biol Macromol ; 251: 126280, 2023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-37591420

RESUMEN

Curcumin (CUR) is among the most natural and effective antitumor drugs for cancer treatment. These drugs have low solubility and short half-lives that reduce their effectiveness in drug release systems. Herein, a hydrogel nanocarrier containing chitosan (CS), alumina (γ-Al2O3), and carbon quantum dots (CQDs) was prepared by the water-in-oil-in-water (W/O/W) double nanoemulsion method. DLS revealed a nanocarrier size of 227 nm, with a zeta potential of -37.8 mV, which corroborates its stability. FE-SEM showed its quasi-spherical shape, FT-IR and XRD confirmed the presence of all the components in the nanocomposite and gave information about the intermolecular interactions between them and the crystalline nature of the nanocarrier, respectively. The drug loading (48 %) and entrapment efficiency (86 %) were higher than those reported previously for other CUR nanocarriers. The drug release profile revealed a controlled and stable release, and a pH-sensitive behavior, with faster CUR release in an acid environment. The breast cancer cell line was examined by cytotoxicity and cell apoptosis analyses. The results showed that the slow release over time and the programmed cell death were due to interactions between CUR and the nanocarrier. Considering the results obtained herein, CS/γAl2O3/CQDs/CUR can be considered as a promising new nanosystem for tumor treatment.

5.
Prog Biomater ; 6(3): 85-96, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28748480

RESUMEN

Here, we report the development of a new polyacrylamide (PAAm)/starch nanofibers' blend system and highlight its potential as substrate for efficient enzyme immobilization. PAAm was synthesized and blended with starch. The final blend was then electrospun into nanofibers. The response surface methodology was used to analyze the parameters that control nanofiber's diameter. Electrospun mat was then modified either by cross-linking or phytase immobilization using silane coupling agent and glutaraldehyde chemistry. Physico-chemical properties of blends were investigated using spectroscopic and thermal studies. The evaluation of immobilized enzyme kinetics on both pure and the starch blended PAAm nanofibers was performed using Michaelis-Menten kinetic curves. Fourier transform infrared spectroscopy results along with differential scanning and X-ray diffraction confirmed that blending was successfully accomplished. TGA analysis also demonstrated that the presence of starch enhances the thermal degradability of PAAm nanofibers. Finally, it was shown that addition of starch to PAAm increases the efficacies of enzyme loading and, therefore, significantly enhances the activity as well as kinetics of the immobilized enzyme on electrospun blend mats.

6.
Appl Biochem Biotechnol ; 170(1): 91-104, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23475318

RESUMEN

In this work, polyacrylamide/multi-walled carbon nanotubes (MWCNT) solution is electrospun to nanocomposite nanofibrous membranes for acetylcholinesterase enzyme immobilization. A new method for enzyme immobilization is proposed, and the results of analysis show successful covalent bonding of enzymes on electrospun membrane surface besides their non-covalent entrapment. Fourier transform infrared spectroscopy, mechanical and thermal investigations of nanofibrous membrane approve successful cross-linking and enzyme immobilization. The enzyme relative activity and kinetic on both pure and nanocomposite membranes is investigated, and the results show proper performance of designed membrane to even improve the enzyme activity followed by immobilization compared to free enzyme. Scanning electron microscopy images show nanofibrous web of 3D structure with a low shrinkage and hydrogel structure followed by enzyme immobilization and cross-linking. Moreover, the important role of functionalized carbon nanotubes on final nanofibrous membrane functionality as a media for enzyme immobilization is investigated. The results show that MWCNT could act effectively for enzyme immobilization improvement via both physical (enhanced fibers' morphology and conductivity) and chemical (enzyme entrapment) methods.


Asunto(s)
Acetilcolinesterasa/química , Resinas Acrílicas/química , Proteínas de Drosophila/química , Enzimas Inmovilizadas/química , Nanocompuestos/química , Acetilcolinesterasa/genética , Animales , Proteínas de Drosophila/genética , Drosophila melanogaster/química , Drosophila melanogaster/enzimología , Estabilidad de Enzimas , Enzimas Inmovilizadas/genética , Cinética , Microscopía Electrónica de Rastreo , Nanocompuestos/ultraestructura , Nanofibras/química , Nanofibras/ultraestructura , Nanotubos de Carbono/química , Nanotubos de Carbono/ultraestructura , Pichia/genética , Espectroscopía Infrarroja por Transformada de Fourier
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA