Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Thromb J ; 21(1): 58, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208753

RESUMEN

The assessment of hemostasis is necessary to make suitable decisions on the management of patients with thrombotic disorders. In some clinical situations, for example, during thrombophilia screening, the presence of anticoagulants in sample makes diagnosis impossible. Various elimination methods may overcome anticoagulant interference. DOAC-Stop, DOAC-Remove and DOAC Filter are available methods to remove direct oral anticoagulants in diagnostic tests, although there are still reports on their incomplete efficacy in several assays. The new antidotes for direct oral anticoagulants - idarucizumab and andexanet alfa - could be potentially useful, but have their drawbacks. The necessity to remove heparins is also arising as heparin contamination from central venous catheter or therapy with heparin disturbs the appropriate hemostasis assessment. Heparinase and polybrene are already present in commercial reagents but a fully-effective neutralizer is still a challenge for researchers, thus promising candidates remain in the research phase.

2.
Int J Mol Sci ; 22(20)2021 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-34681808

RESUMEN

Uncontrolled bleeding after enoxaparin (ENX) is rare but may be life-threatening. The only registered antidote for ENX, protamine sulfate (PS), has 60% efficacy and can cause severe adverse side effects. We developed a diblock copolymer, heparin-binding copolymer (HBC), that reverses intravenously administered heparins. Here, we focused on the HBC inhibitory activity against subcutaneously administered ENX in healthy mice. BALB/c mice were subcutaneously injected with ENX at the dose of 5 mg/kg. After 110 min, vehicle, HBC (6.25 and 12.5 mg/kg), or PS (5 and 10 mg/kg) were administered into the tail vein. The blood was collected after 3, 10, 60, 120, 360, and 600 min after vehicle, HBC, or PS administration. The activities of antifactors Xa and IIa and biochemical parameters were measured. The main organs were collected for histological analysis. HBC at the lower dose reversed the effect of ENX on antifactor Xa activity for 10 min after antidote administration, whereas at the higher dose, HBC reversed the effect on antifactor Xa activity throughout the course of the experiment. Both doses of HBC completely reversed the effect of ENX on antifactor IIa activity. PS did not reverse antifactor Xa activity and partially reversed antifactor IIa activity. HBC modulated biochemical parameters. Histopathological analysis showed changes in the liver, lungs, and spleen of mice treated with HBC and in the lungs and heart of mice treated with PS. HBC administered in an appropriate dose might be an efficient substitute for PS to reverse significantly increased anticoagulant activity that may be connected with major bleeding in patients receiving ENX subcutaneously.


Asunto(s)
Enoxaparina/efectos adversos , Hemorragia/tratamiento farmacológico , Protaminas/uso terapéutico , Animales , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Pruebas de Coagulación Sanguínea , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/tratamiento farmacológico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/prevención & control , Enoxaparina/administración & dosificación , Femenino , Hemorragia/inducido químicamente , Hemorragia/prevención & control , Heparina/metabolismo , Antagonistas de Heparina/metabolismo , Antagonistas de Heparina/farmacología , Antagonistas de Heparina/uso terapéutico , Infusiones Subcutáneas , Masculino , Ratones , Ratones Endogámicos BALB C , Polímeros/química , Polímeros/metabolismo , Polímeros/farmacología , Polímeros/uso terapéutico , Protaminas/metabolismo , Protaminas/farmacología , Unión Proteica
3.
J Pharmacol Exp Ther ; 373(1): 51-61, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31937564

RESUMEN

Bleeding resulting from the application of low-molecular-weight heparins (LMWHs) may be treated with protamine sulfate, but this treatment lacks efficiency; its action against antifactor Xa activity is limited to ∼60%. Moreover, protamine sulfate can cause life-threatening hypersensitivity reactions. We developed diblock heparin-binding copolymer (HBC), which can neutralize the anticoagulant activity of parenteral anticoagulants. In the present study, we explored the safety profile of HBC and its potential to reverse enoxaparin, nadroparin, dalteparin, and tinzaparin in human plasma and at in vivo conditions. HBC-LMWH complexes were characterized using zeta potential, isothermal titration calorimetry, and dynamic light scattering. The rat cardiomyocytes and human endothelial cells were used for the assessment of in vitro toxicity. Male Wistar rats were observed for up to 4 days after HBC administration for clinical evaluation, gross necropsy, and biochemistry and histopathological analysis. Rats were treated with LMWHs alone or followed by short-time intravenous infusion of HBC, and bleeding time and antifactor Xa activity were measured. HBC completely reversed antifactor Xa activity prolonged in vitro by all LMWHs with an optimal weight ratio of 2.5:1. The complexes of HBC-LMWHs were below 5 µm. We observed no effects on the viability of cardiovascular cells treated with HBC at concentrations up to 0.05 mg/ml. Single doses up to 20 mg/kg of HBC were well tolerated by rats. HBC completely reversed the effects of LMWHs on bleeding time and antifactor Xa activity in vivo after 20 minutes and retained ∼80% and ∼60% of reversal activity after 1 and 2 hours, respectively. Well-documented efficacy and safety of HBC both in vitro and in vivo make this polymer a promising candidate for LMWHs reversal. SIGNIFICANCE STATEMENT: Over the last decade, there has been significant progress in developing antidotes for the reversal of anticoagulants. Until now, there has been no effective and safe treatment for patients with severe bleeding under low-molecular-weight heparin therapy. Based on our in vitro and in vivo studies, heparin-binding copolymer seems to be a promising candidate for neutralizing all clinically relevant low-molecular-weight heparins.


Asunto(s)
Anticoagulantes/metabolismo , Antídotos/metabolismo , Hemorragia/metabolismo , Heparina de Bajo-Peso-Molecular/metabolismo , Animales , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Antídotos/farmacología , Antídotos/uso terapéutico , Relación Dosis-Respuesta a Droga , Factor Xa/metabolismo , Hemorragia/prevención & control , Heparina/efectos adversos , Heparina/metabolismo , Heparina de Bajo-Peso-Molecular/efectos adversos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Masculino , Unión Proteica/efectos de los fármacos , Unión Proteica/fisiología , Distribución Aleatoria , Ratas , Ratas Wistar
4.
Int J Mol Sci ; 21(17)2020 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-32825192

RESUMEN

An increase in the peripheral synthesis of serotonin and kynurenine, observed during the chronic kidney disease (CKD) course, is negatively associated with bone health. Serotonin and kynurenine are connected by the common precursor, tryptophan. LP533401 is an inhibitor of peripheral serotonin synthesis. This study aimed to establish if the inhibition of serotonin synthesis by LP533401 may affect the kynurenine pathway activity in bone tissue and its potential consequence with regard to osteogenesis and bone mineral status. Nephrectomized rats were treated with LP533401 at a dose of 30 and 100 mg/kg daily for eight weeks. Tryptophan and kynurenine concentrations were determined, and tryptophan 2,3-dioxygenase (TDO) expression was assessed. We discovered the presence of a TDO-dependent, paracrine kynurenic system in the bone of rats with CKD. Its modulation during LP533401 treatment was associated with impaired bone mineral status. Changes in TDO expression affecting the kynurenine pathway activity were related to the imbalance between peripheral serotonin and 25-hydroxyvitamin D. There were also close associations between the expression of genes participating in osteoblastogenesis and activation of the kynurenine pathway in the bones of LP53301-treated rats. Our results represent the next step in studying the role of tryptophan metabolites in renal osteodystrophy.


Asunto(s)
Enfermedades Óseas Metabólicas/prevención & control , Calcificación Fisiológica , Osteoblastos/efectos de los fármacos , Osteogénesis , Pirimidinas/farmacología , Insuficiencia Renal Crónica/metabolismo , Serotoninérgicos/farmacología , Animales , Enfermedades Óseas Metabólicas/etiología , Enfermedades Óseas Metabólicas/metabolismo , Quinurenina/metabolismo , Masculino , Ratones , Osteoblastos/metabolismo , Osteoblastos/patología , Comunicación Paracrina , Pirimidinas/uso terapéutico , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/complicaciones , Serotonina/biosíntesis , Serotoninérgicos/uso terapéutico , Triptófano/metabolismo , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/metabolismo , Vitamina D/análogos & derivados , Vitamina D/metabolismo
5.
Mar Drugs ; 17(9)2019 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-31533230

RESUMEN

Protamine sulfate (PS) is a polycationic protein drug obtained from the sperm of fish, and is used to reverse the anticoagulant effect of unfractionated heparin (UFH). However, the interactions between PS, UFH, and platelets are still not clear. We measured the platelet numbers and collagen-induced aggregation, P-selectin, platelet factor 4, ß-thromboglobulin, prostacyclin metabolite, D-dimers, activated partial thromboplastin time, prothrombin time, anti-factor Xa, fibrinogen, thrombus weight and megakaryocytopoiesis in blood collected from mice and rats in different time points.. All of the groups were treated intravenously with vehicle, UFH, PS, or UFH with PS. We found a short-term antiplatelet activity of PS in mice and rats, and long-term platelet-independent antithrombotic activity in rats with electrically-induced thrombosis. The antiplatelet and antithrombotic potential of PS may contribute to bleeding risk in PS-overdosed patients. The inhibitory effect of PS on the platelets was attenuated by UFH without inducing thrombocytopenia. Treatment with UFH and PS did not affect the formation, number, or activation of platelets, or the thrombosis development in rodents.


Asunto(s)
Anticoagulantes/efectos adversos , Antagonistas de Heparina/efectos adversos , Heparina/efectos adversos , Protaminas/efectos adversos , Trombocitopenia/diagnóstico , Animales , Anticoagulantes/administración & dosificación , Plaquetas/efectos de los fármacos , Modelos Animales de Enfermedad , Hemorragia/sangre , Hemorragia/inducido químicamente , Hemorragia/prevención & control , Heparina/administración & dosificación , Antagonistas de Heparina/administración & dosificación , Humanos , Masculino , Ratones , Tiempo de Tromboplastina Parcial , Agregación Plaquetaria/efectos de los fármacos , Protaminas/administración & dosificación , Ratas , Trombocitopenia/sangre , Trombocitopenia/inducido químicamente , Factores de Tiempo
6.
Biomacromolecules ; 19(7): 3104-3118, 2018 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-29733637

RESUMEN

Di- and triblock copolymers with low dispersity of molecular weight were synthesized using radical addition-fragmentation chain transfer polymerization. The copolymers contained anionic poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPS) block as an anticoagulant component. The block added to lower the toxicity was either poly(ethylene glycol) (PEG) or poly(2-(methacryloyloxy)ethyl phosphorylcholine) (PMPC). The polymers prolonged clotting times both in vitro and in vivo. The influence of the polymer architecture and composition on the efficacy of anticoagulation and safety parameters was evaluated. The polymer with the optimal safety/efficacy profile was PEG47- b-PAMPS108, i.e., a block copolymer with the degrees of polymerization of PEG and PAMPS blocks equal to 47 and 108, respectively. The anticoagulant action of copolymers is probably mediated by antithrombin, but it differs from that of unfractionated heparin. PEG47- b-PAMPS108 also inhibited platelet aggregation in vitro and increased the prostacyclin production but had no antiplatelet properties in vivo. PEG47- b-PAMPS108 anticoagulant activity can be efficiently reversed with a copolymer of PEG and poly((3-(methacryloylamino)propyl)trimethylammonium chloride) (PMAPTAC) (PEG41- b-PMAPTAC53, HBC), which may be attributed to the formation of polyelectrolyte complexes with PEG shells without anticoagulant properties.


Asunto(s)
Anticoagulantes/síntesis química , Polímeros/química , Ácidos Sulfónicos/química , Animales , Anticoagulantes/farmacología , Masculino , Metacrilatos/química , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Agregación Plaquetaria/efectos de los fármacos , Polietilenglicoles/química , Polímeros/farmacología , Ratas , Ratas Wistar , Ácidos Sulfónicos/farmacología
7.
ACS Appl Mater Interfaces ; 16(1): 153-165, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38150182

RESUMEN

Drugs against bacteria and abnormal cells, such as antibiotics and anticancer drugs, may save human lives. However, drug resistance is becoming more common in the clinical world. Nowadays, a synergistic action of multiple bioactive compounds and their combination with smart nanoplatforms has been considered an alternative therapeutic strategy to fight drug resistance in multidrug-resistant cancers and microorganisms. The present study reports a one-step fabrication of innovative pH-responsive Janus nanofibers loaded with two active compounds, each in separate polymer compartments for synergistic combination therapy. By dissolving one of the compartments from the nanofibers, we could clearly demonstrate a highly yielded anisotropic Janus structure with two faces by scanning electron microscopy (SEM) analysis. To better understand the distinctive attributes of Janus nanofibers, several analytical methods, such as X-ray diffraction (XRD), FTIR spectroscopy, and contact angle goniometry, were utilized to examine and compare them to those of monolithic nanofibers. Furthermore, a drug release test was conducted in pH 7.4 and 6.0 media since the properties of Janus nanofibers correlate significantly with different environmental pH levels. This resulted in the on-demand sequential codelivery of octenidine (OCT) and curcumin (CUR) to the corresponding pH stimulus. Accordingly, the antibacterial properties of Janus fibers against Escherichia coli and Staphylococcus aureus, tested in a suspension test, were pH-dependent, i.e., greater in pH 6 due to the synergistic action of two active compounds, and Eudragit E100 (EE), and highly satisfactory. The biocompatibility of the Janus fibers was confirmed in selected tests.


Asunto(s)
Nanofibras , Humanos , Nanofibras/química , Antibacterianos/farmacología , Antibacterianos/química , Cicatrización de Heridas , Liberación de Fármacos , Control de Infecciones , Concentración de Iones de Hidrógeno
8.
Biomed Pharmacother ; 175: 116731, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38761421

RESUMEN

Nutraceuticals have gained increasing interest, prompting the need to investigate plant extracts for their beneficial properties and potential side effects. This study aimed to assess the nutraceutical effects of environmentally clean extracts from Rosmarinus officinalis and Gongolaria abies-marina (formerly Cystoseira abies-marina (Phaeophyceae)) on the metabolic profile of streptozotocin-induced diabetic rats. We conducted untargeted LC-QTOF-MS metabolic profiling on six groups of rats: three diabetic groups receiving either a placebo, R. officinalis, or G. abies-marina extracts, and three corresponding control groups. The metabolic analysis revealed significant alterations in the levels of various glycerophospholipids, sterol lipids, and fatty acyls. Both extracts influenced the metabolic profile, partially mitigating diabetes-induced changes. Notably, G. abies-marina extract had a more pronounced impact on the animals' metabolic profiles compared to R. officinalis. In conclusion, our findings suggest that environmentally clean extracts from R. officinalis and G. abies-marina possess nutraceutical potential, as they were able to modulate the metabolic profile in streptozotocin-induced diabetic rats. G. abies-marina extract exhibited a more substantial effect on metabolic alterations induced by diabetes compared to R. officinalis. These results warrant further exploration of these plant extracts for their potential in managing diabetes-related metabolic disturbances.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Suplementos Dietéticos , Extractos Vegetales , Rosmarinus , Animales , Extractos Vegetales/farmacología , Rosmarinus/química , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/metabolismo , Masculino , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Ratas , Ratas Wistar , Metabolómica , Metaboloma/efectos de los fármacos , Glucemia/efectos de los fármacos , Glucemia/metabolismo , Estreptozocina , Hipoglucemiantes/farmacología , Hipoglucemiantes/aislamiento & purificación
9.
Adv Healthc Mater ; : e2402191, 2024 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-39370656

RESUMEN

Despite targeting different coagulation cascade sites, all Food and Drug Administration-approved anticoagulants present an elevated risk of bleeding, including potentially life-threatening intracranial hemorrhage. Existing studies have not thoroughly investigated the efficacy and safety of sulfonate polymers in animal models and fully elucidate the precise mechanisms by which these polymers act. The activity and safety of sulfonated di- and triblock copolymers containing poly(sodium styrenesulfonate) (PSSS), poly(sodium 2-acrylamido-2-methylpropanesulfonate) (PAMPS), poly(ethylene glycol) (PEG), poly(sodium methacrylate) (PMAAS), poly(acrylic acid) (PAA), and poly(sodium 11-acrylamidoundecanoate) (PAaU) blocks are synthesized and assessed. PSSS-based copolymers exhibit greater anticoagulant activity than PAMPS-based ones. Their activity is mainly affected by the total concentration of sulfonate groups and molecular weight. PEG-containing copolymers demonstrate a better safety profile than PAA-containing ones. The selected copolymer PEG47-PSSS32 exhibits potent anticoagulant activity in rodents after subcutaneous and intravenous administration. Heparin Binding Copolymer (HBC) completely reverses the anticoagulant activity of polymer in rat and human plasma. No interaction with platelets is observed. Selected copolymer targets mainly factor XII and fibrinogen, and to a lesser extent factors X, IX, VIII, and II, suggesting potential application in blood-contacting biomaterials for anticoagulation purposes. Further studies are needed to explore its therapeutic applications fully.

10.
J Affect Disord ; 368: 180-190, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39271063

RESUMEN

BACKGROUND: Understanding the multifactorial nature of major depressive disorder (MDD) is crucial for tailoring treatments. However, the complex interplay of various factors underlying the development and progression of MDD poses significant challenges. Our previous study demonstrated improvements in cognitive functions in MDD patients undergoing treatment with selective serotonin reuptake inhibitors (SSRIs) supplemented with Lactobacillus plantarum 299v (LP299v). METHODS: To elucidate the biochemical mechanisms underlying cognitive functions improvements, we explored underlying metabolic changes. We employed multi-platform metabolomics, including LC-QTOF-MS and CE-TOF-MS profiling, alongside chiral LC-QqQ-MS analysis for amino acids. RESULTS: Supplementation of SSRI treatment with LP299v intensified the reduction of long-chain acylcarnitines, potentially indicating improved mitochondrial function. LP299v supplementation reduced N-acyl taurines more than four times compared to the placebo, suggesting a substantial impact on restoring biochemical balance. The LP299v-supplemented group showed increased levels of oxidized glycerophosphocholine (oxPC). Additionally, LP299v supplementation led to higher levels of sphingomyelins, L-histidine, D-valine, and p-cresol. LIMITATIONS: This exploratory study suggests potential metabolic pathways influenced by LP299v supplementation. However, the need for further research hinders the ability to draw definitive conclusions. CONCLUSIONS: Observed metabolic changes were linked to mitochondrial dysfunction, inflammation, oxidative stress, and gut microbiota disruption. Despite the subtle nature of this alterations, our research successfully detected these differences and connected them to the metabolic disruptions associated with MDD. Our findings emphasise the intricate relationship between metabolism, gut microbiota, and mental health prompting further research into the mechanisms of action of probiotics in MDD treatment.

11.
Microbiol Spectr ; 11(3): e0084423, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37166300

RESUMEN

The biological activity of polycations is usually associated with their biocidal properties. Their antibacterial features are well known, but in this work, observations on the antifungal properties of macromolecules obtained by methacrylamido propyl trimethyl ammonium chloride (MAPTAC) polymerization are presented. The results, not previously reported, make it possible to correlate antifungal properties directly with the structure of the macromolecule, in particular the molecular mass. The polymers described here have antifungal activity against some filamentous fungi. The strongest effect occurs for polymers with a mass of about 0.5 mDa which have confirmed activity against the multidrug-resistant species Scopulariopsis brevicaulis, Fusarium oxysporum, and Fusarium solani, as well as the dermatophytes Trichophyton mentagrophytes, Trichophyton rubrum, Trichophyton interdigitale, and Trichophyton tonsurans. In addition, this publication describes the effects of these macromolecular systems on serum and blood components and provides a preliminary assessment of toxicity on cell lines of skin-forming cells, i.e., fibroblasts and keratinocytes. Additionally, using a Franz diffusion chamber, a negligibly low transport of the active polymer through the skin was demonstrated, which is a desirable effect for externally applied antifungal drugs. IMPORTANCE Infectious diseases are a very big medical, social, and economic problem. Even before the COVID-19 pandemic, certain infections were among of the most common causes of death. The difficulties in the treatment of infectious diseases concern in particular fungal diseases, against which we have only a few classes of drugs represented by a few substances. The publication presents the preliminary results of the in vitro antifungal activity studies of four MAPTAC polymers on different fungal species and their cytotoxicity to human cells (fibroblasts and keratinocytes). The paper also compares these properties with analogous ones of two commonly used antifungal drugs, ciclopirox and terbinafine.


Asunto(s)
Antifúngicos , COVID-19 , Humanos , Antifúngicos/toxicidad , Cloruro de Amonio , Pandemias , Pruebas de Sensibilidad Microbiana , Polímeros/farmacología
12.
Biomater Sci ; 11(16): 5502-5516, 2023 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-37378581

RESUMEN

Local bacterial infections lead to delayed wound healing and in extreme cases, such as diabetic foot ulcers, to non-healing due to the impaired cellular function in such wounds. Thus, many scientists have focused on developing advanced therapeutic platforms to treat infections and promote cellular proliferation and angiogenesis. This study presents a facile approach for designing nanofibrous scaffolds in three dimensions (3D) with enhanced antibacterial activity to meet the need of treating chronic diabetic wounds. Being a cationic surfactant as well as an antimicrobial agent, octenidine (OCT) makes a 2D membrane hydrophilic, enabling it to be modified into a 3D scaffold in a "one stone, two birds" manner. Aqueous sodium borohydride (NaBH4) solution plays a dual role in the fabrication process, functioning as both a reducing agent for the in situ synthesis of silver nanoparticles (Ag NPs) anchored on the nanofiber surface and a hydrogen gas producer for expanding the 2D membranes into fully formed 3D nanofiber scaffolds, as demonstrated by morphological analyses. Various techniques were used to characterize the developed scaffold (e.g., SEM, XRD, DSC, FTIR, and surface wettability), demonstrating a multilayered porous structure and superhydrophilic properties besides showing sustained and prolonged release of OCT (61% ± 1.97 in 144 h). Thanks to the synergistic effect of OCT and Ag NPs, the antibacterial performance of the 3D scaffold was significantly higher than that of the 2D membrane. Moreover, cell viability was studied in vitro on mouse fibroblasts L929, and the noncytotoxic character of the 3D scaffold was confirmed. Overall, it is shown that the obtained multifunctional 3D scaffold is an excellent candidate for diabetic wound healing and skin repair.


Asunto(s)
Diabetes Mellitus , Nanopartículas del Metal , Nanofibras , Ratones , Animales , Nanofibras/química , Andamios del Tejido/química , Nanopartículas del Metal/química , Plata , Antibacterianos/química , Diabetes Mellitus/tratamiento farmacológico
13.
Vaccine ; 40(13): 1996-2002, 2022 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-35183388

RESUMEN

ChAdOx1 nCoV-19 adenoviral vector vaccine (ChAd) against coronavirus disease 2019 has been associated with vaccine-induced thrombosis and thrombocytopenia (VITT), especially in young women who have presented with unusual localized thrombosis after receiving the vaccine. The pathogenesis of VITT remains incompletely understood. We tried to provide new insights into mechanisms underlying this phenomenon in the model of arterial thrombosis electrically induced in the carotid artery of female rats. At 28 days post-vaccination, ChAd induced SARS-CoV-2-specific neutralizing antibody responses in all animals. The analysis of the blood vessel/thrombus area showed slight luminal narrowing of the carotid artery with extravasation of blood in vaccinated rats. These small changes were not accompanied by differences in thrombus weight and composition. The vaccinated animals presented a slight increase (by around 14-24%) in platelet aggregation. ChAd did not significantly affect blood coagulation, platelet counts, and their activation markers. Unaffected thrombus formation, the lack of thrombocytopenia and all the measured blood and hemostasis parameters that predominantly stayed unchanged, indicate that the ChAd does not increase the risk of arterial thrombosis development in female rats.


Asunto(s)
COVID-19 , Trombosis , Vacunas , Animales , COVID-19/prevención & control , Vacunas contra la COVID-19/efectos adversos , ChAdOx1 nCoV-19 , Femenino , Humanos , Agregación Plaquetaria , Ratas , SARS-CoV-2 , Trombosis/etiología , Trombosis/prevención & control
14.
J Clin Med ; 11(8)2022 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-35456329

RESUMEN

The routine monitoring of direct oral anticoagulants (DOACs) may be considered in patients with renal impairment, patients who are heavily obese, or patients requiring elective surgery. Using the heparin-binding copolymer (HBC) and polybrene, we aimed to develop a solution for monitoring the anticoagulant activity of DOACs in human plasma in the interfering presence of unfractionated heparin (UFH) and enoxaparin. The thrombin time (TT) and anti-factor Xa activity were monitored in pooled plasma from healthy volunteers. In these tests, plasma with dabigatran or rivaroxaban was mixed with UFH or enoxaparin and then incubated with HBC or polybrene, respectively. HBC and polybrene neutralized heparins and enabled monitoring of anticoagulant activity of dabigatran in the TT test. Both agents allowed for accurate measurement of anti-factor Xa activity in the plasma containing rivaroxaban and heparins in the concentration range reached in patients' blood. Here, we present diagnostic tools that may improve the control of anticoagulation by eliminating the contamination of blood samples with heparins and enabling the monitoring of DOACs' activity.

15.
Pharmaceuticals (Basel) ; 14(12)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34959624

RESUMEN

The methods used in preclinical studies should minimize the suffering and the number of animals but still provide precise and consistent results enabling the introduction of drug candidates into the phase of clinical trials. Thus, we aimed to develop a method allowing us to perform preliminary safety and toxicity studies of candidates for human medicines, while reducing the number of animals. We have devised a method based on a combination of two devices: Plugsys (Transonics System Inc., Ithaca, NY, USA) and PhysioSuite (Kent Scientific Corporation, Torrington, CT, USA), which allow simultaneous registration of nine circulatory and respiratory parameters, and body temperature. Vehicle and adrenaline, or nitroglycerin, as reference substances were administered into the right femoral vein of Wistar rats. Physiological conditions were registered over 60 min after drug administration by measuring systolic, diastolic and mean blood pressure, heart rate (HR), blood perfusion of paw vessels, blood oxygen saturation, respiratory rate, average and peak exhaled CO2, and body temperature. Blood pressure was measured by cannula placed in the left common carotid artery and connected to the pressure transducer (Plugsys). The other parameters were measured by the PhysioSuite. Adrenaline-induced immediate dose-related hypertension and nitroglycerin hypotension were correlated with the change in blood perfusion. They both increased HR. Adrenaline decreased blood oxygen saturation and slightly affected respiratory parameters, while nitroglycerin caused a progressive increase in respiratory rate and a decrease in the peak of exhaled CO2. Our method may become an inseparable part of the preliminary safety and toxicity studies of tested drugs, while being an important step towards improving animal welfare.

16.
Pharmaceutics ; 13(8)2021 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-34452183

RESUMEN

MM-129 is a novel inhibitor targeting BTK/PI3K/AKT/mTOR and PD-L1, as it possesses antitumor activity against colon cancer. To evaluate the safety profile of MM-129, we conducted a toxicity study using the zebrafish and rodent model. MM-129 was also assessed for pharmacokinetics features through an in vivo study on Wistar rats. The results revealed that MM-129 exhibited favorable pharmacokinetics with quick absorption and 68.6% of bioavailability after intraperitoneal administration. No serious adverse events were reported for the use of MM-129, confirming a favorable safety profile for this compound. It was not fatal and toxic to mice at an anticancer effective dose of 10 µmol/kg. At the end of 14 days of administering hematological and biochemical parameters, liver and renal functions were all at normal levels. No sublethal effects were either detected in zebrafish embryos treated with a concentration of 10 µM. MM-129 has the potential as a safe and well-tolerated anticancer formulation for future treatment of patients with colon cancer.

17.
Pharmaceutics ; 13(3)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803176

RESUMEN

Protamine sulfate (PS) is the only available option to reverse the anticoagulant activity of unfractionated heparin (UFH), however it can cause cardiovascular and respiratory complications. We explored the toxicity of PS and its complexes with UFH in zebrafish, rats, and mice. The involvement of nitric oxide (NO) in the above effects was investigated. Concentration-dependent lethality, morphological defects, and decrease in heart rate (HR) were observed in zebrafish larvae. PS affected HR, blood pressure, respiratory rate, peak exhaled CO2, and blood oxygen saturation in rats. We observed hypotension, increase of HR, perfusion of paw vessels, and enhanced respiratory disturbances with increases doses of PS. We found no effects of PS on human hERG channels or signs of heart damage in mice. The hypotension in rats and bradycardia in zebrafish were partially attenuated by the inhibitor of endothelial NO synthase. The disturbances in cardiovascular and respiratory parameters were reduced or delayed when PS was administered together with UFH. The cardiorespiratory toxicity of PS seems to be charge-dependent and involves enhanced release of NO. PS administered at appropriate doses and ratios with UFH should not cause permanent damage of heart tissue, although careful monitoring of cardiorespiratory parameters is necessary.

18.
Int J Tryptophan Res ; 13: 1178646920954882, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-35210786

RESUMEN

Impaired kidney function and increased inflammatory process occurring in the course of Chronic Kidney Disease (CKD) contribute to the development of complex amino-acid alterations. The essential amino-acid tryptophan (TRP) undergoes extensive metabolism along several pathways, resulting in the production of many biologically active compounds. The results of many studies have shown that its metabolism via the kynurenine pathway is potently increased in the course of CKD. Metabolites of this pathway exhibit differential, sometimes opposite, roles in several biological processes. Their accumulation in the course of CKD may induce oxidative cell damage which stimulates inflammatory processes. They can also modulate the activity of numerous cellular signaling pathways through activation of the aryl hydrocarbon receptor, leading to the disruption of homeostasis of various organs. As a result, they can contribute to the development of the systemic disorders accompanying the course of chronic renal failure. This review gathers and systematizes reports concerning the knowledge connecting the kynurenine pathway metabolites to systemic disorders accompanying the development of CKD.

19.
Sci Rep ; 10(1): 9483, 2020 06 11.
Artículo en Inglés | MEDLINE | ID: mdl-32528183

RESUMEN

Chronic kidney disease (CKD) is deemed to be a worldwide health concern connected with neurological manifestations. The etiology of central nervous system (CNS) disorders in CKD is still not fully understood, however particular attention is currently being paid to the impact of accumulated toxins. Indoxyl sulfate (IS) is one of the most potent uremic toxins. The purpose of the present study was to assess IS concentrations in the cerebellum, brainstem, cortex, hypothalamus, and striatum with hippocampus of rats chronically exposed to IS. To evaluate IS impact on neurochemical and behavioral alterations, we examined its influence on brain levels of norepinephrine, epinephrine, dopamine, serotonin and their metabolites, as well as changes in behavioral tests (open field test, elevated plus maze test, chimney test, T maze test, and splash test). Our results show the highest IS accumulation in the brainstem. IS leads to behavioral alterations involving apathetic behavior, increased stress sensitivity, and reduced locomotor and exploratory activity. Besides, IS contributes to the impairment of spatial memory and motor coordination. Furthermore, we observed reduced levels of norepinephrine, dopamine or serotonin, mainly in the brainstem. Our findings indicate that IS can be one of the crucial uremic factors responsible for altered mental status in CKD.


Asunto(s)
Sistema Nervioso Central/efectos de los fármacos , Indicán/farmacología , Toxinas Biológicas/toxicidad , Uremia/inducido químicamente , Animales , Sistema Nervioso Central/metabolismo , Dopamina/metabolismo , Riñón/efectos de los fármacos , Riñón/metabolismo , Locomoción/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Modelos Animales , Enfermedades del Sistema Nervioso/inducido químicamente , Enfermedades del Sistema Nervioso/metabolismo , Norepinefrina/metabolismo , Ratas , Ratas Wistar , Insuficiencia Renal Crónica/inducido químicamente , Insuficiencia Renal Crónica/metabolismo , Serotonina/metabolismo , Memoria Espacial/efectos de los fármacos , Uremia/metabolismo
20.
RSC Adv ; 9(6): 3020-3029, 2019 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-35518950

RESUMEN

Besides regulating ligand-receptor and cell-cell interactions, heparan sulfate (HS) may participate in the development of many diseases, such as cancer, bacterial or viral infections, and their complications, like bleeding or inflammation. In these cases, the neutralization of HS could be a potential therapeutic target. The heparin-binding copolymer (HBC, PEG41-PMAPTAC53) was previously reported by us as a fully synthetic compound for efficient and safe neutralization of heparins and synthetic anticoagulants. In a search for molecular antagonists of HS, we examined the activity of HBC as an HS inhibitor both in vitro and in vivo and characterized HBC/HS complexes. Using a colorimetric Azure A method, isothermal titration calorimetry and dynamic light scattering techniques we found that HBC binds HS by forming complexes below 200 nm with less than 1 : 1 stoichiometry. We confirmed the HBC inhibitory effect in rats by measuring activated partial thromboplastin time, prothrombin time, anti-factor Xa activity, anti-factor IIa activity, and platelet aggregation. HBC reversed the enhancement of all tested parameters caused by HS demonstrating that cationic synthetic block copolymers may have a therapeutic value in various disorders involving overproduction of HS.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA