Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 22(2)2021 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-33450984

RESUMEN

Trauma remains a leading global cause of mortality, particularly in the young population. In the United States, approximately 30,000 patients with blunt cardiac trauma were recorded annually. Cardiac damage is a predictor for poor outcome after multiple trauma, with a poor prognosis and prolonged in-hospitalization. Systemic elevation of cardiac troponins was correlated with survival, injury severity score, and catecholamine consumption of patients after multiple trauma. The clinical features of the so-called "commotio cordis" are dysrhythmias, including ventricular fibrillation and sudden cardiac arrest as well as wall motion disorders. In trauma patients with inappropriate hypotension and inadequate response to fluid resuscitation, cardiac injury should be considered. Therefore, a combination of echocardiography (ECG) measurements, echocardiography, and systemic appearance of cardiomyocyte damage markers such as troponin appears to be an appropriate diagnostic approach to detect cardiac dysfunction after trauma. However, the mechanisms of post-traumatic cardiac dysfunction are still actively being investigated. This review aims to discuss cardiac damage following trauma, focusing on mechanisms of post-traumatic cardiac dysfunction associated with inflammation and complement activation. Herein, a causal relationship of cardiac dysfunction to traumatic brain injury, blunt chest trauma, multiple trauma, burn injury, psychosocial stress, fracture, and hemorrhagic shock are illustrated and therapeutic options are discussed.


Asunto(s)
Susceptibilidad a Enfermedades , Cardiopatías/etiología , Cardiopatías/fisiopatología , Disfunción Ventricular/etiología , Disfunción Ventricular/fisiopatología , Heridas y Lesiones/complicaciones , Animales , Biomarcadores , Activación de Complemento , Manejo de la Enfermedad , Metabolismo Energético , Cardiopatías/diagnóstico , Cardiopatías/metabolismo , Pruebas de Función Cardíaca , Humanos , Índice de Severidad de la Enfermedad , Disfunción Ventricular/diagnóstico , Disfunción Ventricular/metabolismo
2.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803323

RESUMEN

Periodontitis is the inflammatory destruction of the tooth-surrounding and -supporting tissue, resulting at worst in tooth loss. Another locally aggressive disease of the oral cavity is tooth resorption (TR). This is associated with the destruction of the dental mineralized tissue. However, the underlying pathomechanisms remain unknown. The complement system, as well as mast cells (MCs), are known to be involved in osteoclastogenesis and bone loss. The complement factors C3 and C5 were previously identified as key players in periodontal disease. Therefore, we hypothesize that complement factors and MCs might play a role in alveolar bone and tooth resorption. To investigate this, we used the cat as a model because of the naturally occurring high prevalence of both these disorders in this species. Teeth, gingiva samples and serum were collected from domestic cats, which had an appointment for dental treatment under anesthesia, as well as from healthy cats. Histological analyses, immunohistochemical staining and the CH-50 and AH-50 assays revealed increased numbers of osteoclasts and MCs, as well as complement activity in cats with TR. Calcifications score in the gingiva was highest in animals that suffer from TR. This indicates that MCs and the complement system are involved in the destruction of the mineralized tissue in this condition.


Asunto(s)
Pérdida de Hueso Alveolar/metabolismo , Complemento C3/metabolismo , Complemento C5/metabolismo , Mastocitos/metabolismo , Periodontitis/metabolismo , Resorción Dentaria/metabolismo , Pérdida de Hueso Alveolar/patología , Animales , Gatos , Mastocitos/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Periodontitis/patología , Resorción Dentaria/patología
3.
Scand J Immunol ; 91(2): e12837, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31622512

RESUMEN

After severe trauma, the resulting excessive inflammatory response is countered by compensatory anti-inflammatory mechanisms. The systemic inflammatory response to trauma enhanced by inappropriately timed surgical second hits may be detrimental for the patient. On the other hand, overwhelming anti-inflammatory mechanisms may put patients at increased risk from secondary local and systemic infections. The ensuing sepsis and organ dysfunction due to immune dysregulation remain the leading causes of death after injury. To date, there are no clinically applicable techniques to monitor the pro-/anti-inflammatory immune status of the patients and the remaining ability to react to microbial stimuli. Therefore, in the present study, we used a highly standardized and easy-to-use system to draw peripheral whole blood from polytraumatized patients (ISS ≥ 32, n = 7) and to challenge it with bacterial lipopolysaccharide. Secreted cytokines were compared with those in samples from healthy volunteers. We observed a significant decrease in the release of monocyte-derived mediators. Surprisingly, we detected stable or even increased concentrations of cytokines related to T cell maturation and function. For clinical practicability, we reduced the incubation time before supernatants were collected. Even after an abbreviated stimulation period, a stable release of almost all analysed parameters in patient blood could be detected. In conclusion, the data are indicative of a clinically well-applicable approach to monitor the immune status in severely injured patients in a short time. This may be used to optimize the timing of necessary surgical interventions to avoid a boost of proinflammation and reduce risk of secondary infections.


Asunto(s)
Monitorización Inmunológica/métodos , Traumatismo Múltiple/diagnóstico , Adulto , Células Cultivadas , Progresión de la Enfermedad , Femenino , Humanos , Lipopolisacáridos/inmunología , Masculino , Persona de Mediana Edad , Proyectos Piloto
4.
Mediators Inflamm ; 2020: 6051983, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410859

RESUMEN

Sepsis is associated with global cardiac dysfunction and with high mortality rate. The development of septic cardiomyopathy is due to complex interactions of damage-associated molecular patters, cytokines, and complement activation products. The aim of this study was to define the effects of sepsis on cardiac structure, gap junction, and tight junction (TJ) proteins. Sepsis was induced by cecal ligation and puncture in male C57BL/6 mice. After a period of 24 h, the expression of cardiac structure, gap junction, and TJ proteins was determined. Murine HL-1 cells were stimulated with LPS, and mRNA expression of cardiac structure and gap junction proteins, intracellular reactive oxygen species, and troponin I release was analyzed. Furthermore, pyrogenic receptor subtype 7 (P2X7) expression and troponin I release of human cardiomyocytes (iPS) were determined after LPS exposure. In vivo, protein expression of connexin43 and α-actinin was decreased after the onset of polymicrobial sepsis, whereas in HL-1 cells, mRNA expression of connexin43, α-actinin, and desmin was increased in the presence of LPS. Expression of TJ proteins was not affected in vivo during sepsis. Although the presence of LPS and nigericin resulted in a significant troponin I release from HL-1 cells. Sepsis affected cardiac structure and gap junction proteins in mice, potentially contributing to compromised cardiac function.


Asunto(s)
Lesiones Cardíacas/metabolismo , Lipopolisacáridos/metabolismo , Miocitos Cardíacos/efectos de los fármacos , Receptores Purinérgicos P2X7/metabolismo , Sepsis/fisiopatología , Receptores Toll-Like/metabolismo , Animales , Línea Celular , Citocinas/metabolismo , Modelos Animales de Enfermedad , Uniones Comunicantes , Cardiopatías/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Miocardio/metabolismo , Nigericina/farmacología , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Proteínas de Uniones Estrechas/metabolismo , Troponina I/metabolismo
5.
J Transl Med ; 17(1): 305, 2019 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-31488164

RESUMEN

Trauma is the leading cause of mortality in humans below the age of 40. Patients injured by accidents frequently suffer severe multiple trauma, which is life-threatening and leads to death in many cases. In multiply injured patients, thoracic trauma constitutes the third most common cause of mortality after abdominal injury and head trauma. Furthermore, 40-50% of all trauma-related deaths within the first 48 h after hospital admission result from uncontrolled hemorrhage. Physical trauma and hemorrhage are frequently associated with complex pathophysiological and immunological responses. To develop a greater understanding of the mechanisms of single and/or multiple trauma, reliable and reproducible animal models, fulfilling the ethical 3 R's criteria (Replacement, Reduction and Refinement), established by Russell and Burch in 'The Principles of Human Experimental Technique' (published 1959), are required. These should reflect both the complex pathophysiological and the immunological alterations induced by trauma, with the objective to translate the findings to the human situation, providing new clinical treatment approaches for patients affected by severe trauma. Small animal models are the most frequently used in trauma research. Rattus norvegicus was the first mammalian species domesticated for scientific research, dating back to 1830. To date, there exist numerous well-established procedures to mimic different forms of injury patterns in rats, animals that are uncomplicated in handling and housing. Nevertheless, there are some physiological and genetic differences between humans and rats, which should be carefully considered when rats are chosen as a model organism. The aim of this review is to illustrate the advantages as well as the disadvantages of rat models, which should be considered in trauma research when selecting an appropriate in vivo model. Being the most common and important models in trauma research, this review focuses on hemorrhagic shock, blunt chest trauma, bone fracture, skin and soft-tissue trauma, burns, traumatic brain injury and polytrauma.


Asunto(s)
Heridas y Lesiones/patología , Animales , Modelos Animales de Enfermedad , Humanos , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Ratas , Heridas y Lesiones/terapia
6.
Brain Behav Immun ; 80: 667-677, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31085218

RESUMEN

Cardiovascular disorders (CVD) and posttraumatic stress disorder (PTSD) are highly comorbid, but the underlying mechanisms are not fully understood. Chronic psychosocial stress was induced in male mice by chronic subordinate colony housing (CSC), a pre-clinically validated mouse model for PTSD. Cardiac structure and function were assessed on day 20 of the CSC paradigm. Following CSC, mice were kept in different sensory contact modalities to the last aggressor for 30 days, and development of cardiac function and behavioral aspects were determined. Here we show that psychosocial trauma affects heart structure by disturbing cell-to-cell integrity of cardiomyocytes, causes tachycardia, disturbance of diurnal heart rate rhythmicity and behavioral deficits in a mouse model for PTSD. Structural and functional alterations were also found in cardiomyocytes upon in vitro treatment with pro-inflammatory cytokines typically increased after psychosocial trauma. Interestingly, sensory contact to the aggressor subsequent to psychosocial trauma prohibits functional and structural heart recovery, while isolation was beneficial for cardiac but detrimental for mental health. These findings contribute to our understanding of potential mechanisms underlying the high comorbidity of CVD and PTSD.


Asunto(s)
Enfermedades Cardiovasculares/fisiopatología , Trastornos por Estrés Postraumático/fisiopatología , Glándulas Suprarrenales , Hormona Adrenocorticotrópica , Animales , Ansiedad/fisiopatología , Enfermedades Cardiovasculares/etiología , Comorbilidad , Modelos Animales de Enfermedad , Corazón/fisiología , Pruebas de Función Cardíaca/métodos , Frecuencia Cardíaca/fisiología , Vivienda para Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Psicología/métodos , Trastornos por Estrés Postraumático/psicología , Estrés Psicológico/metabolismo , Estrés Psicológico/fisiopatología , Taquicardia
7.
Pediatr Res ; 86(6): 709-718, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31336381

RESUMEN

BACKGROUND: Asphyxia of newborns is a severe and frequent challenge of the peri- and postnatal period. METHODS: Forty-four neonatal piglets underwent asphyxia and hemorrhage (AH), followed by resuscitation with blood or crystalloid transfusion. In this study, 15 piglets (blood n = 9, NaCl n = 6, mean age 31 h) were randomly chosen. Four hours after return of spontaneous circulation, heart tissue and blood were collected. Analyses of heart fatty acid binding protein (HFABP), cardiac troponin I (TnI) levels, and activation of the complement system were performed. Histological staining for connexin 43 (Cx43) and complement C5a receptor 1 (C5aR1) was performed. RESULTS: Following AH, systemic elevation of cardiac TnI and HFABP revealed cardiac damage in both groups. Systemic activation of the complement system and the appearance of extracellular histones in plasma of the blood transfusion group were observed. The Cx43 was translocated from the intercalated discs to the cytosol after AH. Cardiac glycogen concentration was reduced in both groups. A significant reduction of C5aR1 in the left ventricle and a significant elevation of the heart injury score were investigated after blood transfusion. CONCLUSION: AH leads to alteration of the heart, particularly in Cx43 and glycogen reserves, as well as local inflammation.


Asunto(s)
Animales Recién Nacidos , Asfixia/complicaciones , Paro Cardíaco/patología , Hemorragia/complicaciones , Miocardio/patología , Animales , Ecocardiografía , Paro Cardíaco/etiología , Paro Cardíaco/fisiopatología , Porcinos
8.
J Immunol ; 198(12): 4846-4854, 2017 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-28490576

RESUMEN

During sepsis, excessive activation of the complement system with generation of the anaphylatoxin C5a results in profound disturbances in crucial neutrophil functions. Moreover, because neutrophil activity is highly dependent on intracellular pH (pHi), we propose a direct mechanistic link between complement activation and neutrophil pHi In this article, we demonstrate that in vitro exposure of human neutrophils to C5a significantly increased pHi by selective activation of the sodium/hydrogen exchanger. Upstream signaling of C5a-mediated intracellular alkalinization was dependent on C5aR1, intracellular calcium, protein kinase C, and calmodulin, and downstream signaling regulated the release of antibacterial myeloperoxidase and lactoferrin. Notably, the pH shift caused by C5a increased the glucose uptake and activated glycolytic flux in neutrophils, resulting in a significant release of lactate. Furthermore, C5a induced acidification of the extracellular micromilieu. In experimental murine sepsis, pHi of blood neutrophils was analogously alkalinized, which could be normalized by C5aR1 inhibition. In the clinical setting of sepsis, neutrophils from patients with septic shock likewise exhibited a significantly increased pHi These data suggest a novel role for the anaphylatoxin C5a as a master switch of the delicate pHi balance in neutrophils resulting in profound inflammatory and metabolic changes that contribute to hyperlactatemia during sepsis.


Asunto(s)
Activación de Complemento , Complemento C5a/metabolismo , Activación Neutrófila , Neutrófilos/inmunología , Sepsis/inmunología , Sepsis/metabolismo , Animales , Antiácidos/farmacología , Calcio/metabolismo , Calmodulina/metabolismo , Complemento C5a/inmunología , Glucosa/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Lactatos/metabolismo , Lactoferrina , Ratones , Neutrófilos/química , Neutrófilos/efectos de los fármacos , Neutrófilos/metabolismo , Peroxidasa/metabolismo , Proteína Quinasa C/inmunología , Proteína Quinasa C/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Transducción de Señal
9.
Cell Immunol ; 331: 137-145, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29954581

RESUMEN

Platelets modulate the immune system following injury by interacting with CD4+ T regulatory cells (CD4+ Tregs). The underlying mechanisms remain unsolved. We hypothesize paracrine interactions via Tumor necrosis factor-alpha (TNFα)-, Toll like receptor-4 (TLR4)-, and Interleukin-10 (IL-10). In the murine burn injury model, CD4+ Treg activation pathways were selectively addressed using TNFR2-, TLR4- and IL-10-deficient mice. The CD4+ Treg signalling molecule PKC-θ was analyzed using phospho-flow cytometry to detect rapid cell activation. Thromboelastometry (ROTEM®) was used to assess platelet activation. Injury induced significant early activation of CD4+ Tregs, disruption of TNFR2 and TLR4 activation pathways resulted in lower activity. The disruption of IL-10 crosstalk had no significant impact. Selective disruption of paracrine interactions is associated with changes in posttraumatic hemostasis parameters. TNFR2- and TLR4-dependent pathways modulate the activation of CD4+ Tregs following trauma. In contrast, we did not observe a role of IL-10 in the posttraumatic activation of CD4+ Tregs. ONE SENTENCE SUMMARY: TLR4- and TNFR2-dependent mechanisms, but not IL-10-dependent pathways, modulate the anti-inflammatory response of CD4+ Tregs following trauma.


Asunto(s)
Quemaduras/inmunología , Interleucina-10/inmunología , Activación de Linfocitos/inmunología , Receptores Tipo II del Factor de Necrosis Tumoral/inmunología , Linfocitos T Reguladores/inmunología , Receptor Toll-Like 4/inmunología , Animales , Quemaduras/metabolismo , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Interleucina-10/genética , Interleucina-10/metabolismo , Masculino , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Activación Plaquetaria/inmunología , Proteína Quinasa C-theta/inmunología , Proteína Quinasa C-theta/metabolismo , Receptores Tipo II del Factor de Necrosis Tumoral/genética , Receptores Tipo II del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/genética , Transducción de Señal/inmunología , Linfocitos T Reguladores/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo
10.
FASEB J ; 31(9): 4129-4139, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28572445

RESUMEN

Polymicrobial sepsis in mice causes myocardial dysfunction after generation of the complement anaphylatoxin, complement component 5a (C5a). C5a interacts with its receptors on cardiomyocytes (CMs), resulting in redox imbalance and cardiac dysfunction that can be functionally measured and quantitated using Doppler echocardiography. In this report we have evaluated activation of MAPKs and Akt in CMs exposed to C5a in vitro and after cecal ligation and puncture (CLP) in vivo In both cases, C5a in vitro caused activation (phosphorylation) of MAPKs and Akt in CMs, which required availability of both C5a receptors. Using immunofluorescence technology, activation of MAPKs and Akt occurred in left ventricular (LV) CMs, requiring both C5a receptors, C5aR1 and -2. Use of a water-soluble p38 inhibitor curtailed activation in vivo of MAPKs and Akt in LV CMs as well as the appearance of cytokines and histones in plasma from CLP mice. When mouse macrophages were exposed in vitro to LPS, activation of MAPKs and Akt also occurred. The copresence of the p38 inhibitor blocked these activation responses. Finally, the presence of the p38 inhibitor in CLP mice reduced the development of cardiac dysfunction. These data suggest that polymicrobial sepsis causes cardiac dysfunction that appears to be linked to activation of MAPKs and Akt in heart.-Fattahi, F., Kalbitz, M., Malan, E. A., Abe, E., Jajou, L., Huber-Lang, M. S., Bosmann, M., Russell, M. W., Zetoune, F. S., Ward, P. A. Complement-induced activation of MAPKs and Akt during sepsis: role in cardiac dysfunction.


Asunto(s)
Complemento C5a/metabolismo , Regulación de la Expresión Génica/fisiología , Cardiopatías/etiología , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sepsis/metabolismo , Animales , Complemento C5a/genética , Cardiopatías/metabolismo , Interleucinas , Masculino , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Proteínas Proto-Oncogénicas c-akt/genética , Ratas , Ratas Sprague-Dawley , Receptor de Anafilatoxina C5a/genética , Receptor de Anafilatoxina C5a/metabolismo
11.
J Immunol ; 197(6): 2353-61, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27521340

RESUMEN

There is accumulating evidence during sepsis that cardiomyocyte (CM) homeostasis is compromised, resulting in cardiac dysfunction. An important role for complement in these outcomes is now demonstrated. Addition of C5a to electrically paced CMs caused prolonged elevations of intracellular Ca(2+) concentrations during diastole, together with the appearance of spontaneous Ca(2+) transients. In polymicrobial sepsis in mice, we found that three key homeostasis-regulating proteins in CMs were reduced: Na(+)/K(+)-ATPase, which is vital for effective action potentials in CMs, and two intracellular Ca(2+) concentration regulatory proteins, that is, sarcoplasmic/endoplasmic reticulum calcium ATPase 2 and the Na(+)/Ca(2+) exchanger. Sepsis caused reduced mRNA levels and reductions in protein concentrations in CMs for all three proteins. The absence of either C5a receptor mitigated sepsis-induced reductions in the three regulatory proteins. Absence of either C5a receptor (C5aR1 or C5aR2) diminished development of defective systolic and diastolic echocardiographic/Doppler parameters developing in the heart (cardiac output, left ventricular stroke volume, isovolumic relaxation, E' septal annulus, E/E' septal annulus, left ventricular diastolic volume). We also found in CMs from septic mice the presence of defective current densities for Ik1, l-type calcium channel, and Na(+)/Ca(2+) exchanger. These defects were accentuated in the copresence of C5a. These data suggest complement-related mechanisms responsible for development of cardiac dysfunction during sepsis.


Asunto(s)
Coinfección/inmunología , Miocitos Cardíacos/inmunología , Miocitos Cardíacos/patología , Sepsis/inmunología , Sepsis/fisiopatología , Animales , Calcio/metabolismo , Canales de Calcio Tipo L/inmunología , Coinfección/microbiología , Coinfección/fisiopatología , Complemento C5a/inmunología , Citoplasma/química , Citoplasma/metabolismo , Corazón/fisiopatología , Ratones , Miocitos Cardíacos/microbiología , Receptor de Anafilatoxina C5a/deficiencia , Receptor de Anafilatoxina C5a/inmunología , Receptor de Anafilatoxina C5a/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/inmunología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Sepsis/complicaciones
12.
Int J Mol Sci ; 19(7)2018 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-30013010

RESUMEN

Postmenopausal females display a chronic inflammatory phenotype with higher levels of circulating pro-inflammatory cytokines. Furthermore, the inflammatory response to injury may be altered under estrogen-deficiency, because it was shown previously that estrogen-deficient mice displayed increased levels of the inflammatory cytokines Midkine (Mdk) and Interleukin-6 (IL-6) in the early fracture hematoma. Because a balanced immune response to fracture is required for successful bone regeneration, this might contribute to the delayed fracture healing frequently observed in osteoporotic, postmenopausal fracture patients. In this study, we aimed to investigate whether further cytokines in addition to Mdk and IL-6 might be affected by estrogen-deficiency after fracture in mice and whether these cytokines are also relevant during human fracture healing. Additionally, we aimed to investigate whether serum from male vs. female fracture patients affects osteogenic differentiation of human mesenchymal stem cells (MSCs). To address these questions, female mice were either sham-operated or ovariectomized (OVX) and subjected to standardized femur osteotomy. A broad panel of pro- and anti-inflammatory cytokines was determined systemically and locally in the fracture hematoma. In a translational approach, serum was collected from healthy controls and patients with an isolated fracture. Mdk and IL-6 serum levels were determined at day 0, day 14 and day 42 after fracture. Subgroup analysis was performed to investigate differences between male and female fracture patients after menopause. In an in vitro approach, human MSCs were cultured with the collected patient serum and osteogenic differentiation was assessed by qPCR and alkaline-phosphatase staining. Our results suggest an important role for the pro-inflammatory cytokines Mdk and IL-6 in the response to fracture in estrogen-deficient mice among all of the measured inflammatory mediators. Notably, both cytokines were also significantly increased in the serum of patients after fracture. However, only Mdk serum levels differed significantly between male and female fracture patients after menopause. MSCs cultivated with serum from female fracture patients displayed significantly reduced osteogenic differentiation, which was attenuated by Mdk-antibody treatment. In conclusion, our study demonstrated increased Mdk levels after fracture in OVX mice and female fracture patients after menopause. Because Mdk is a negative regulator of bone formation, this might contribute to impaired osteoporotic fracture healing.


Asunto(s)
Citocinas/sangre , Curación de Fractura , Fracturas Óseas/sangre , Mediadores de Inflamación/sangre , Posmenopausia/sangre , Fosfatasa Alcalina/genética , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/genética , Estrógenos/deficiencia , Femenino , Fracturas Óseas/fisiopatología , Humanos , Péptidos y Proteínas de Señalización Intercelular/sangre , Interleucina-6/sangre , Masculino , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Midkina , Ovariectomía
13.
FASEB J ; 30(12): 3997-4006, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27543123

RESUMEN

Cardiac dysfunction develops during sepsis in humans and rodents. In the model of polymicrobial sepsis induced by cecal ligation and puncture (CLP), we investigated the role of the NLRP3 inflammasome in the heart. Mouse heart homogenates from sham-procedure mice contained high mRNA levels of NLRP3 and IL-1ß. Using the inflammasome protocol, exposure of cardiomyocytes (CMs) to LPS followed by ATP or nigericin caused release of mature IL-1ß. Immunostaining of left ventricular frozen sections before and 8 h after CLP revealed the presence of NLRP3 and IL-1ß proteins in CMs. CLP caused substantial increases in mRNAs for IL-1ß and NLRP3 in CMs which are reduced in the absence of either C5aR1 or C5aR2. After CLP, NLRP3-/- mice showed reduced plasma levels of IL-1ß and IL-6. In vitro exposure of wild-type CMs to recombinant C5a (rC5a) caused elevations in both cytosolic and nuclear/mitochondrial reactive oxygen species (ROS), which were C5a-receptor dependent. Use of a selective NOX2 inhibitor prevented increased cytosolic and nuclear/mitochondrial ROS levels and release of IL-1ß. Finally, NLRP3-/- mice had reduced defects in echo/Doppler parameters in heart after CLP. These studies establish that the NLRP3 inflammasome contributes to the cardiomyopathy of polymicrobial sepsis.-Kalbitz, M., Fattahi, F., Grailer, J. J., Jajou, L., Malan, E. A., Zetoune, F. S., Huber-Lang, M., Russell, M. W., Ward, P. A. Complement-induced activation of the cardiac NLRP3 inflammasome in sepsis.


Asunto(s)
Complemento C5a/metabolismo , Inflamasomas/metabolismo , Mitocondrias/metabolismo , Miocitos Cardíacos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sepsis/metabolismo , Animales , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Ratones , Ratas , Especies Reactivas de Oxígeno/metabolismo
14.
World J Surg ; 41(1): 162-169, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27501709

RESUMEN

BACKGROUND: The incidence of cardiac injury in immediate fatalities after blunt trauma remains underestimated, and reliable diagnostic strategies are still missing. Furthermore, clinical data concerning heart-specific troponin serum levels, injury severity score (ISS), catecholamine treatment and survival of patients on admission to the hospital have rarely been interrelated so far. Therefore, the object of the present study was to identify predictive parameters for mortality in the context of blunt cardiac injury. METHODS: This retrospective observational study included 173 severely injured patients with an ISS ≥25 admitted to the University Hospital of Ulm, a level 1 trauma center, during 2009-2013 . Furthermore, 83 blunt trauma victims who died before hospital admission were subjected to postmortem examination at the Institute of Legal Medicine, University of Ulm, during 2009-2014. ISS, cardiac injury and associated thoracic injuries were determined in both groups. Furthermore, in the hospitalized patients, serum troponin and IL-6 levels were measured. RESULTS: Macroscopic heart injury was observed in 18 % of the patients who died at the scene and only in 1 % of the patients admitted to the hospital, indicating that macroscopic heart injury is associated with an immediate life-threatening condition. Troponin levels were elevated in 43 % of the patients after admission to the hospital. Moreover, troponin serum concentrations were significantly higher in patients treated with norepinephrine (26.4 ± 4 ng/l) and in non-survivors (84.9 ± 22.8 ng/l) compared to patients without catecholamines and survivors, respectively. CONCLUSIONS: Macroscopic heart injury was 20 times more frequent in non-survivors than in survivors. Serum troponin levels correlated with mortality after multiple injury and therefore may represent a valuable prognostic marker in trauma patients.


Asunto(s)
Contusiones Miocárdicas/epidemiología , Troponina/sangre , Adulto , Anciano , Anciano de 80 o más Años , Biomarcadores/sangre , Femenino , Alemania/epidemiología , Humanos , Interleucina-6/sangre , Masculino , Persona de Mediana Edad , Traumatismo Múltiple/epidemiología , Contusiones Miocárdicas/sangre , Norepinefrina/uso terapéutico , Pronóstico , Estudios Retrospectivos , Centros Traumatológicos , Vasoconstrictores/uso terapéutico
15.
FASEB J ; 29(5): 2185-93, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25681459

RESUMEN

The purpose of this study was to define the relationship in polymicrobial sepsis (in adult male C57BL/6 mice) between heart dysfunction and the appearance in plasma of extracellular histones. Procedures included induction of sepsis by cecal ligation and puncture and measurement of heart function using echocardiogram/Doppler parameters. We assessed the ability of histones to cause disequilibrium in the redox status and intracellular [Ca(2+)]i levels in cardiomyocytes (CMs) (from mice and rats). We also studied the ability of histones to disturb both functional and electrical responses of hearts perfused with histones. Main findings revealed that extracellular histones appearing in septic plasma required C5a receptors, polymorphonuclear leukocytes (PMNs), and the Nacht-, LRR-, and PYD-domains-containing protein 3 (NLRP3) inflammasome. In vitro exposure of CMs to histones caused loss of homeostasis of the redox system and in [Ca(2+)]i, as well as defects in mitochondrial function. Perfusion of hearts with histones caused electrical and functional dysfunction. Finally, in vivo neutralization of histones in septic mice markedly reduced the parameters of heart dysfunction. Histones caused dysfunction in hearts during polymicrobial sepsis. These events could be attenuated by histone neutralization, suggesting that histones may be targets in the setting of sepsis to reduce cardiac dysfunction.


Asunto(s)
Cardiomiopatías/etiología , Modelos Animales de Enfermedad , Histonas/efectos adversos , Mitocondrias/patología , Sepsis/complicaciones , Animales , Calcio/metabolismo , Cardiomiopatías/sangre , Cardiomiopatías/diagnóstico , Proteínas Portadoras/fisiología , Caspasa 1/fisiología , Células Cultivadas , Histonas/sangre , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Sepsis/sangre , Sepsis/patología , Receptor Toll-Like 2/fisiología , Receptor Toll-Like 4/fisiología
16.
J Immunol ; 192(12): 5974-83, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24795455

RESUMEN

The inflammasome is a key factor in innate immunity and senses soluble pathogen and danger-associated molecular patterns as well as biological crystals (urate, cholesterol, etc.), resulting in expression of IL-1ß and IL-18. Using a standard model of acute lung injury (ALI) in mice featuring airway instillation of LPS, ALI was dependent on availability of NLRP3 as well as caspase-1, which are known features of the NLRP3 inflammasome. The appearance of IL-1ß, a product of NLRP3 inflammasome activation, was detected in bronchoalveolar lavage fluids (BALF) in a macrophage- and neutrophil-dependent manner. Neutrophil-derived extracellular histones appeared in the BALF during ALI and directly activated the NLRP3 inflammasome. Ab-mediated neutralization of histones significantly reduced IL-1ß levels in BALF during ALI. Inflammasome activation by extracellular histones in LPS-primed macrophages required NLRP3 and caspase-1 as well as extrusion of K(+), increased intracellular Ca(2+) concentration, and generation of reactive oxygen species. NLRP3 and caspase-1 were also required for full extracellular histone presence during ALI, suggesting a positive feedback mechanism. Extracellular histone and IL-1ß levels in BALF were also elevated in C5a-induced and IgG immune complex ALI models, suggesting a common inflammatory mechanism. These data indicate an interaction between extracellular histones and the NLRP3 inflammasome, resulting in ALI. Such findings suggest novel targets for treatment of ALI, for which there is currently no known efficacious drug.


Asunto(s)
Lesión Pulmonar Aguda/inmunología , Proteínas Portadoras/inmunología , Inflamasomas/inmunología , Macrófagos Alveolares/inmunología , Neutrófilos/inmunología , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/patología , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Proteínas Portadoras/genética , Caspasa 1/genética , Caspasa 1/inmunología , Modelos Animales de Enfermedad , Histonas/genética , Histonas/inmunología , Inflamasomas/genética , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Lipopolisacáridos/farmacología , Macrófagos Alveolares/patología , Ratones , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR , Neutrófilos/patología
17.
Mediators Inflamm ; 2015: 463950, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26556956

RESUMEN

Severe tissue trauma-induced systemic inflammation is often accompanied by evident or occult blood-organ barrier dysfunctions, frequently leading to multiple organ dysfunction. However, it is unknown whether specific barrier molecules are shed into the circulation early after trauma as potential indicators of an initial barrier dysfunction. The release of the barrier molecule junctional adhesion molecule-1 (JAM-1) was investigated in plasma of C57BL/6 mice 2 h after experimental mono- and polytrauma as well as in polytrauma patients (ISS ≥ 18) during a 10-day period. Correlation analyses were performed to indicate a linkage between JAM-1 plasma concentrations and organ failure. JAM-1 was systemically detected after experimental trauma in mice with blunt chest trauma as a driving force. Accordingly, JAM-1 was reduced in lung tissue after pulmonary contusion and JAM-1 plasma levels significantly correlated with increased protein levels in the bronchoalveolar lavage as a sign for alveolocapillary barrier dysfunction. Furthermore, JAM-1 was markedly released into the plasma of polytrauma patients as early as 4 h after the trauma insult and significantly correlated with severity of disease and organ dysfunction (APACHE II and SOFA score). The data support an early injury- and time-dependent appearance of the barrier molecule JAM-1 in the circulation indicative of a commencing trauma-induced barrier dysfunction.


Asunto(s)
Moléculas de Adhesión Celular/sangre , Traumatismo Múltiple/sangre , Receptores de Superficie Celular/sangre , APACHE , Animales , Líquido del Lavado Bronquioalveolar/química , Humanos , Ratones , Ratones Endogámicos C57BL , Índice de Severidad de la Enfermedad
18.
J Orthop Res ; 42(5): 1134-1144, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37986646

RESUMEN

Meniscal tearing can increase the contact pressure between the tibia and femur by causing gapping of torn meniscus tissue. The aim of this study was to quantify gapping behavior of radial and longitudinal tears and their impact on peak contact pressure and mean contact area. Twelve porcine knee joints underwent unicondylar, convertible osteotomy for exact tear application and consecutive suturing. Six tantalum marker beads were positioned along meniscus tears. The joints were preloaded with sinusoidal loading cycles ranging between 0 N and 350 N. Peak load was held constant and two synchronized Roentgen stereophotogrammetric analysis x-ray images were obtained to evaluate gapping, peak contact pressure and mean contact area in the native, torn and repaired states. There was no change in gapping or peak contact pressure in longitudinal tear. By contrast, the radial tear led to a significant gapping when compared to the native state, while the inside-out suture was able to restore gapping in parts of the meniscus. An increase in contact pressure after radial tear was detected, which was again normalized after suturing. The most important finding of the study is that longitudinal tears did not gap under pure axial loading, whereas radial tears tended to separate the tear interfaces.


Asunto(s)
Menisco , Lesiones de Menisco Tibial , Animales , Porcinos , Meniscos Tibiales/diagnóstico por imagen , Meniscos Tibiales/cirugía , Lesiones de Menisco Tibial/cirugía , Fenómenos Biomecánicos , Articulación de la Rodilla/cirugía , Rotura
19.
J Clin Med ; 13(4)2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38398274

RESUMEN

Background: Polytrauma is one of the leading mortality factors in younger patients, and in particular, the presence of cardiac damage correlates with a poor prognosis. Currently, troponin T is the gold standard, although troponin is limited as a biomarker. Therefore, there is a need for new biomarkers of cardiac damage early after trauma. Methods: Polytraumatized patients (ISS ≥ 16) were divided into two groups: those with cardiac damage (troponin T > 50 pg/mL, n = 37) and those without cardiac damage (troponin T < 12 pg/mL, n = 32) on admission to the hospital. Patients' plasma was collected in the emergency room 24 h after trauma, and plasma from healthy volunteers (n = 10) was sampled. The plasma was analyzed for the expression of HFABP, GDF-15 and uPAR proteins, as well as miR-21, miR-29, miR-34, miR-122, miR-125b, miR-133, miR-194, miR-204, and miR-155. Results were correlated with patients' outcomes. Results: HFABP, uPAR, and GDF-15 were increased in polytraumatized patients with cardiac damage (p < 0.001) with a need for catecholamines. HFABP was increased in non-survivors. Analysis of systemic miRNA concentrations showed a significant increase in miR-133 (p < 0.01) and miR-21 (p < 0.05) in patients with cardiac damage. Conclusion: All tested plasma proteins, miR-133, and miR-21 were found to reflect the cardiac damage in polytrauma patients. GDF-15 and HFABP were shown to strongly correlate with patients' outcomes.

20.
Front Immunol ; 14: 1074207, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36761764

RESUMEN

Introduction: Clinical and preclinical data suggest accelerated bone fracture healing in subjects with an additional traumatic brain injury (TBI). Mechanistically, altered metabolism and neuro-endocrine regulations have been shown to influence bone formation after combined fracture and TBI, thereby increasing the bone content in the fracture callus. However, the early inflammatory response towards fracture and TBI has not been investigated in detail so far. This is of great importance, since the early inflammatory phase of fracture healing is known to be essential for the initiation of downstream regenerative processes for adequate fracture repair. Methods: Therefore, we analyzed systemic and local inflammatory mediators and immune cells in mice which were exposed to fracture only or fracture + TBI 6h and 24h after injury. Results: We found a dysregulated systemic immune response and significantly fewer neutrophils and mast cells locally in the fracture hematoma. Further, local CXCL10 expression was significantly decreased in the animals with combined trauma, which correlated significantly with the reduced mast cell numbers. Discussion: Since mast cells and mast cell-derived CXCL10 have been shown to increase osteoclastogenesis, the reduced mast cell numbers might contribute to higher bone content in the fracture callus of fracture + TBI mice due to decreased callus remodeling.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Fracturas Óseas , Animales , Ratones , Callo Óseo/metabolismo , Lesiones Traumáticas del Encéfalo/inmunología , Curación de Fractura , Fracturas Óseas/inmunología , Osteogénesis/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA