RESUMEN
Thousands of genetic variants in protein-coding genes have been linked to disease. However, the functional impact of most variants is unknown as they occur within intrinsically disordered protein regions that have poorly defined functions1-3. Intrinsically disordered regions can mediate phase separation and the formation of biomolecular condensates, such as the nucleolus4,5. This suggests that mutations in disordered proteins may alter condensate properties and function6-8. Here we show that a subset of disease-associated variants in disordered regions alter phase separation, cause mispartitioning into the nucleolus and disrupt nucleolar function. We discover de novo frameshift variants in HMGB1 that cause brachyphalangy, polydactyly and tibial aplasia syndrome, a rare complex malformation syndrome. The frameshifts replace the intrinsically disordered acidic tail of HMGB1 with an arginine-rich basic tail. The mutant tail alters HMGB1 phase separation, enhances its partitioning into the nucleolus and causes nucleolar dysfunction. We built a catalogue of more than 200,000 variants in disordered carboxy-terminal tails and identified more than 600 frameshifts that create arginine-rich basic tails in transcription factors and other proteins. For 12 out of the 13 disease-associated variants tested, the mutation enhanced partitioning into the nucleolus, and several variants altered rRNA biogenesis. These data identify the cause of a rare complex syndrome and suggest that a large number of genetic variants may dysregulate nucleoli and other biomolecular condensates in humans.
Asunto(s)
Nucléolo Celular , Proteína HMGB1 , Humanos , Arginina/genética , Arginina/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/patología , Proteína HMGB1/química , Proteína HMGB1/genética , Proteína HMGB1/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Proteínas Intrínsecamente Desordenadas/metabolismo , Síndrome , Mutación del Sistema de Lectura , Transición de FaseRESUMEN
Mouse models are a critical tool for studying human diseases, particularly developmental disorders1. However, conventional approaches for phenotyping may fail to detect subtle defects throughout the developing mouse2. Here we set out to establish single-cell RNA sequencing of the whole embryo as a scalable platform for the systematic phenotyping of mouse genetic models. We applied combinatorial indexing-based single-cell RNA sequencing3 to profile 101 embryos of 22 mutant and 4 wild-type genotypes at embryonic day 13.5, altogether profiling more than 1.6 million nuclei. The 22 mutants represent a range of anticipated phenotypic severities, from established multisystem disorders to deletions of individual regulatory regions4,5. We developed and applied several analytical frameworks for detecting differences in composition and/or gene expression across 52 cell types or trajectories. Some mutants exhibit changes in dozens of trajectories whereas others exhibit changes in only a few cell types. We also identify differences between widely used wild-type strains, compare phenotyping of gain- versus loss-of-function mutants and characterize deletions of topological associating domain boundaries. Notably, some changes are shared among mutants, suggesting that developmental pleiotropy might be 'decomposable' through further scaling of this approach. Overall, our findings show how single-cell profiling of whole embryos can enable the systematic molecular and cellular phenotypic characterization of mouse mutants with unprecedented breadth and resolution.
Asunto(s)
Discapacidades del Desarrollo , Embrión de Mamíferos , Mutación , Fenotipo , Análisis de Expresión Génica de una Sola Célula , Animales , Ratones , Núcleo Celular/genética , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/patología , Embrión de Mamíferos/metabolismo , Embrión de Mamíferos/patología , Mutación con Ganancia de Función , Genotipo , Mutación con Pérdida de Función , Modelos Genéticos , Modelos Animales de EnfermedadRESUMEN
Mutations in the PQBP1 gene (polyglutamine-binding protein-1) are responsible for a syndromic X-linked form of neurodevelopmental disorder (XL-NDD) with intellectual disability (ID), named Renpenning syndrome. PQBP1 encodes a protein involved in transcriptional and post-transcriptional regulation of gene expression. To investigate the consequences of PQBP1 loss, we used RNA interference to knock-down (KD) PQBP1 in human neural stem cells (hNSC). We observed a decrease of cell proliferation, as well as the deregulation of the expression of 58 genes, comprising genes encoding proteins associated with neurodegenerative diseases, playing a role in mRNA regulation or involved in innate immunity. We also observed an enrichment of genes involved in other forms of NDD (CELF2, APC2, etc). In particular, we identified an increase of a non-canonical isoform of another XL-NDD gene, UPF3B, an actor of nonsense mRNA mediated decay (NMD). This isoform encodes a shorter protein (UPF3B_S) deprived from the domains binding NMD effectors, however no notable change in NMD was observed after PQBP1-KD in fibroblasts containing a premature termination codon. We showed that short non-canonical and long canonical UPF3B isoforms have different interactomes, suggesting they could play distinct roles. The link between PQBP1 loss and increase of UPF3B_S expression was confirmed in mRNA obtained from patients with pathogenic variants in PQBP1, particularly pronounced for truncating variants and missense variants located in the C-terminal domain. We therefore used it as a molecular marker of Renpenning syndrome, to test the pathogenicity of variants of uncertain clinical significance identified in PQPB1 in individuals with NDD, using patient blood mRNA and HeLa cells expressing wild-type or mutant PQBP1 cDNA. We showed that these different approaches were efficient to prove a functional effect of variants in the C-terminal domain of the protein. In conclusion, our study provided information on the pathological mechanisms involved in Renpenning syndrome, but also allowed the identification of a biomarker of PQBP1 deficiency useful to test variant effect.
RESUMEN
CSTF2 encodes an RNA-binding protein that is essential for mRNA cleavage and polyadenylation (C/P). No disease-associated mutations have been described for this gene. Here, we report a mutation in the RNA recognition motif (RRM) of CSTF2 that changes an aspartic acid at position 50 to alanine (p.D50A), resulting in intellectual disability in male patients. In mice, this mutation was sufficient to alter polyadenylation sites in over 1300 genes critical for brain development. Using a reporter gene assay, we demonstrated that C/P efficiency of CSTF2D50A was lower than wild type. To account for this, we determined that p.D50A changed locations of amino acid side chains altering RNA binding sites in the RRM. The changes modified the electrostatic potential of the RRM leading to a greater affinity for RNA. These results highlight the significance of 3' end mRNA processing in expression of genes important for brain plasticity and neuronal development.
Asunto(s)
Factor de Estimulación del Desdoblamiento/genética , Discapacidad Intelectual/genética , Mutación Missense , Poliadenilación , Motivo de Reconocimiento de ARN , Regiones no Traducidas 3' , Animales , Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , Niño , Factor de Estimulación del Desdoblamiento/química , Factor de Estimulación del Desdoblamiento/metabolismo , Femenino , Células HeLa , Humanos , Discapacidad Intelectual/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Linaje , Unión ProteicaRESUMEN
We report two unrelated families with multigenerational nonsyndromic intellectual disability (ID) segregating with a recurrent de novo missense variant (c.1543C>T:p.Leu515Phe) in the alkali cation/proton exchanger gene SLC9A7 (also commonly referred to as NHE7). SLC9A7 is located on human X chromosome at Xp11.3 and has not yet been associated with a human phenotype. The gene is widely transcribed, but especially abundant in brain, skeletal muscle and various secretory tissues. Within cells, SLC9A7 resides in the Golgi apparatus, with prominent enrichment in the trans-Golgi network (TGN) and post-Golgi vesicles. In transfected Chinese hamster ovary AP-1 cells, the Leu515Phe mutant protein was correctly targeted to the TGN/post-Golgi vesicles, but its N-linked oligosaccharide maturation as well as that of a co-transfected secretory membrane glycoprotein, vesicular stomatitis virus G (VSVG) glycoprotein, was reduced compared to cells co-expressing SLC9A7 wild-type and VSVG. This correlated with alkalinization of the TGN/post-Golgi compartments, suggestive of a gain-of-function. Membrane trafficking of glycosylation-deficient Leu515Phe and co-transfected VSVG to the cell surface, however, was relatively unaffected. Mass spectrometry analysis of patient sera also revealed an abnormal N-glycosylation profile for transferrin, a clinical diagnostic marker for congenital disorders of glycosylation. These data implicate a crucial role for SLC9A7 in the regulation of TGN/post-Golgi pH homeostasis and glycosylation of exported cargo, which may underlie the cellular pathophysiology and neurodevelopmental deficits associated with this particular nonsyndromic form of X-linked ID.
Asunto(s)
Enfermedades Genéticas Ligadas al Cromosoma X/genética , Aparato de Golgi/genética , Discapacidad Intelectual/genética , Intercambiadores de Sodio-Hidrógeno/genética , Ácidos/metabolismo , Animales , Células CHO , Membrana Celular/genética , Cricetinae , Cricetulus , Regulación de la Expresión Génica/genética , Enfermedades Genéticas Ligadas al Cromosoma X/metabolismo , Enfermedades Genéticas Ligadas al Cromosoma X/patología , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Glicoproteínas de Membrana/genética , Mutación Missense/genética , Transporte de Proteínas/genética , Transfección , Proteínas del Envoltorio Viral/genética , Red trans-Golgi/genéticaRESUMEN
Mutations in adaptor protein complex-4 (AP-4) genes have first been identified in 2009, causing a phenotype termed as AP-4 deficiency syndrome. Since then several patients with overlapping phenotypes, comprised of intellectual disability (ID) and spastic tetraplegia have been reported. To delineate the genotype-phenotype correlation of the AP-4 deficiency syndrome, we add the data from 30 affected individuals from 12 out of 640 Iranian families with ID in whom we detected disease-causing variants in AP-4 complex subunits, using next-generation sequencing. Furthermore, by comparing genotype-phenotype findings of those affected individuals with previously reported patients, we further refine the genotype-phenotype correlation in this syndrome. The most frequent reported clinical findings in the 101 cases consist of ID and/or global developmental delay (97%), speech disorders (92.1%), inability to walk (90.1%), spasticity (77.2%), and microcephaly (75.2%). Spastic tetraplegia has been reported in 72.3% of the investigated patients. The major brain imaging findings are abnormal corpus callosum morphology (63.4%) followed by ventriculomegaly (44.5%). Our result might suggest the AP-4 deficiency syndrome as a major differential diagnostic for unknown hereditary neurodegenerative disorders.
Asunto(s)
Complejo 4 de Proteína Adaptadora/genética , Estudios de Asociación Genética , Discapacidad Intelectual/genética , Cuadriplejía/genética , Complejo 4 de Proteína Adaptadora/deficiencia , Adolescente , Encéfalo/metabolismo , Encéfalo/patología , Niño , Preescolar , Estudios de Cohortes , Cuerpo Calloso/diagnóstico por imagen , Cuerpo Calloso/patología , Femenino , Humanos , Discapacidad Intelectual/diagnóstico por imagen , Discapacidad Intelectual/patología , Irán/epidemiología , Masculino , Mutación/genética , Linaje , Fenotipo , Cuadriplejía/diagnóstico por imagen , Cuadriplejía/patologíaRESUMEN
The prevalence of intellectual disability is around 3%; however, the etiology of the disease remains unclear in most cases. We identified a series of patients with X-linked intellectual disability presenting mutations in the Rad6a (Ube2a) gene, which encodes for an E2 ubiquitin-conjugating enzyme. Drosophila deficient for dRad6 display defective synaptic function as a consequence of mitochondrial failure. Similarly, mouse mRad6a (Ube2a) knockout and patient-derived hRad6a (Ube2a) mutant cells show defective mitochondria. Using in vitro and in vivo ubiquitination assays, we show that RAD6A acts as an E2 ubiquitin-conjugating enzyme that, in combination with an E3 ubiquitin ligase such as Parkin, ubiquitinates mitochondrial proteins to facilitate the clearance of dysfunctional mitochondria in cells. Hence, we identify RAD6A as a regulator of Parkin-dependent mitophagy and establish a critical role for RAD6A in maintaining neuronal function.
Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Mitofagia , Enzimas Ubiquitina-Conjugadoras/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Adulto , Animales , Carbonil Cianuro m-Clorofenil Hidrazona/farmacología , Estudios de Casos y Controles , Línea Celular , Niño , Drosophila , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Exoma , Estudios de Asociación Genética , Humanos , Cinética , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Noqueados , Mitocondrias Musculares/efectos de los fármacos , Mitocondrias Musculares/fisiología , Mutación Missense , Unión Neuromuscular/metabolismo , Linaje , Análisis de Secuencia de ADN , Enzimas Ubiquitina-Conjugadoras/metabolismo , Ubiquitinación , Desacopladores/farmacologíaRESUMEN
FRMPD4 (FERM and PDZ Domain Containing 4) is a neural scaffolding protein that interacts with PSD-95 to positively regulate dendritic spine morphogenesis, and with mGluR1/5 and Homer to regulate mGluR1/5 signaling. We report the genetic and functional characterization of 4 FRMPD4 deleterious mutations that cause a new X-linked intellectual disability (ID) syndrome. These mutations were found to be associated with ID in ten affected male patients from four unrelated families, following an apparent X-linked mode of inheritance. Mutations include deletion of an entire coding exon, a nonsense mutation, a frame-shift mutation resulting in premature termination of translation, and a missense mutation involving a highly conserved amino acid residue neighboring FRMPD4-FERM domain. Clinical features of these patients consisted of moderate to severe ID, language delay and seizures alongside with behavioral and/or psychiatric disturbances. In-depth functional studies showed that a frame-shift mutation, FRMPD4p.Cys618ValfsX8, results in a disruption of FRMPD4 binding with PSD-95 and HOMER1, and a failure to increase spine density in transfected hippocampal neurons. Behavioral studies of frmpd4-KO mice identified hippocampus-dependent spatial learning and memory deficits in Morris Water Maze test. These findings point to an important role of FRMPD4 in normal cognitive development and function in humans and mice, and support the hypothesis that FRMPD4 mutations cause ID by disrupting dendritic spine morphogenesis in glutamatergic neurons.
Asunto(s)
Espinas Dendríticas/metabolismo , Discapacidad Intelectual/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Adolescente , Adulto , Anciano , Exones/genética , Femenino , Mutación del Sistema de Lectura/genética , Humanos , Masculino , Persona de Mediana Edad , Morfogénesis/genética , Morfogénesis/fisiología , Mutación/genética , Neurogénesis/genética , Neurogénesis/fisiología , Linaje , Adulto JovenRESUMEN
Gorlin-Chaudhry-Moss syndrome (GCMS) is a dysmorphic syndrome characterized by coronal craniosynostosis and severe midface hypoplasia, body and facial hypertrichosis, microphthalmia, short stature, and short distal phalanges. Variable lipoatrophy and cutis laxa are the basis for a progeroid appearance. Using exome and genome sequencing, we identified the recurrent de novo mutations c.650G>A (p.Arg217His) and c.649C>T (p.Arg217Cys) in SLC25A24 in five unrelated girls diagnosed with GCMS. Two of the girls had pronounced neonatal progeroid features and were initially diagnosed with Wiedemann-Rautenstrauch syndrome. SLC25A24 encodes a mitochondrial inner membrane ATP-Mg/Pi carrier. In fibroblasts from affected individuals, the mutated SLC25A24 showed normal stability. In contrast to control cells, the probands' cells showed mitochondrial swelling, which was exacerbated upon treatment with hydrogen peroxide (H2O2). The same effect was observed after overexpression of the mutant cDNA. Under normal culture conditions, the mitochondrial membrane potential of the probands' fibroblasts was intact, whereas ATP content in the mitochondrial matrix was lower than that in control cells. However, upon H2O2 exposure, the membrane potential was significantly elevated in cells harboring the mutated SLC25A24. No reduction of mitochondrial DNA copy number was observed. These findings demonstrate that mitochondrial dysfunction with increased sensitivity to oxidative stress is due to the SLC25A24 mutations. Our results suggest that the SLC25A24 mutations induce a gain of pathological function and link mitochondrial ATP-Mg/Pi transport to the development of skeletal and connective tissue.
Asunto(s)
Anomalías Múltiples/genética , Antiportadores/genética , Proteínas de Unión al Calcio/genética , Anomalías Craneofaciales/genética , Craneosinostosis/genética , Conducto Arterioso Permeable/genética , Hipertricosis/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , Mutación/genética , Adenosina Trifosfato/genética , Adolescente , Niño , Preescolar , Cutis Laxo/genética , ADN Mitocondrial/genética , Exoma/genética , Femenino , Retardo del Crecimiento Fetal/genética , Fibroblastos/patología , Trastornos del Crecimiento , Humanos , Peróxido de Hidrógeno/farmacología , Lactante , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Potencial de la Membrana Mitocondrial/genética , Mitocondrias/efectos de los fármacos , Estrés Oxidativo/genética , Progeria/genéticaRESUMEN
Rare pathogenic EIF2S3 missense and terminal deletion variants cause the X-linked intellectual disability (ID) syndrome MEHMO, or a milder phenotype including pancreatic dysfunction and hypopituitarism. We present two unrelated male patients who carry novel EIF2S3 pathogenic missense variants (p.(Thr144Ile) and p.(Ile159Leu)) thereby broadening the limited genetic spectrum and underscoring clinically variable expressivity of MEHMO. While the affected male with p.(Thr144Ile) presented with severe motor delay, severe microcephaly, moderate ID, epileptic seizures responsive to treatments, hypogenitalism, central obesity, facial features, and diabetes, the affected male with p.(Ile159Leu) presented with moderate ID, mild motor delay, microcephaly, epileptic seizures resistant to treatment, central obesity, and mild facial features. Both variants are located in the highly conserved guanine nucleotide binding domain of the EIF2S3 encoded eIF2γ subunit of the heterotrimeric translation initiation factor 2 (eIF2) complex. Further, we investigated both variants in a structural model and in yeast. The reduced growth rates and lowered fidelity of translation with increased initiation at non-AUG codons observed for both mutants in these studies strongly support pathogenicity of the variants.
Asunto(s)
Epilepsia/genética , Factor 2 Eucariótico de Iniciación/genética , Genitales/anomalías , Hipogonadismo/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Microcefalia/genética , Obesidad/genética , Biosíntesis de Proteínas , Adolescente , Niño , Preescolar , Epilepsia/patología , Femenino , Predisposición Genética a la Enfermedad , Genitales/patología , Humanos , Hipogonadismo/patología , Lactante , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/patología , Microcefalia/patología , Mutación/genética , Mutación Missense/genética , Obesidad/patologíaRESUMEN
Autosomal recessive (AR) gene defects are the leading genetic cause of intellectual disability (ID) in countries with frequent parental consanguinity, which account for about 1/7th of the world population. Yet, compared to autosomal dominant de novo mutations, which are the predominant cause of ID in Western countries, the identification of AR-ID genes has lagged behind. Here, we report on whole exome and whole genome sequencing in 404 consanguineous predominantly Iranian families with two or more affected offspring. In 219 of these, we found likely causative variants, involving 77 known and 77 novel AR-ID (candidate) genes, 21 X-linked genes, as well as 9 genes previously implicated in diseases other than ID. This study, the largest of its kind published to date, illustrates that high-throughput DNA sequencing in consanguineous families is a superior strategy for elucidating the thousands of hitherto unknown gene defects underlying AR-ID, and it sheds light on their prevalence.
Asunto(s)
Genes Recesivos/genética , Discapacidad Intelectual/genética , Adulto , Consanguinidad , Exoma/genética , Familia , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Homocigoto , Humanos , Irán , Masculino , Persona de Mediana Edad , Mutación/genética , Linaje , Mapas de Interacción de Proteínas/genética , Secuenciación del Exoma/métodos , Secuenciación Completa del Genoma/métodosRESUMEN
RLIM, also known as RNF12, is an X-linked E3 ubiquitin ligase acting as a negative regulator of LIM-domain containing transcription factors and participates in X-chromosome inactivation (XCI) in mice. We report the genetic and clinical findings of 84 individuals from nine unrelated families, eight of whom who have pathogenic variants in RLIM (RING finger LIM domain-interacting protein). A total of 40 affected males have X-linked intellectual disability (XLID) and variable behavioral anomalies with or without congenital malformations. In contrast, 44 heterozygous female carriers have normal cognition and behavior, but eight showed mild physical features. All RLIM variants identified are missense changes co-segregating with the phenotype and predicted to affect protein function. Eight of the nine altered amino acids are conserved and lie either within a domain essential for binding interacting proteins or in the C-terminal RING finger catalytic domain. In vitro experiments revealed that these amino acid changes in the RLIM RING finger impaired RLIM ubiquitin ligase activity. In vivo experiments in rlim mutant zebrafish showed that wild type RLIM rescued the zebrafish rlim phenotype, whereas the patient-specific missense RLIM variants failed to rescue the phenotype and thus represent likely severe loss-of-function mutations. In summary, we identified a spectrum of RLIM missense variants causing syndromic XLID and affecting the ubiquitin ligase activity of RLIM, suggesting that enzymatic activity of RLIM is required for normal development, cognition and behavior.
Asunto(s)
Discapacidad Intelectual Ligada al Cromosoma X/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Adolescente , Adulto , Animales , Niño , Preescolar , Trastorno de la Conducta/genética , Femenino , Genes Ligados a X , Células HEK293 , Humanos , Recién Nacido , Discapacidad Intelectual/genética , Discapacidad Intelectual/metabolismo , Masculino , Discapacidad Intelectual Ligada al Cromosoma X/metabolismo , Ratones , Persona de Mediana Edad , Mutación , Linaje , Factores de Transcripción/genética , Ubiquitinación , Inactivación del Cromosoma X , Pez Cebra , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismoRESUMEN
Moebius syndrome (MBS) is a congenital disorder caused by paralysis of the facial and abducens nerves. Although a number of candidate genes have been suspected, so far only mutations in PLXND1 and REV3L are confirmed to cause MBS. Here, we fine mapped the breakpoints of a complex chromosomal rearrangement (CCR) 46,XY,t(7;8;11;13) in a patient with MBS, which revealed 41 clustered breakpoints with typical hallmarks of chromothripsis. Among 12 truncated protein-coding genes, SEMA3A is known to bind to the MBS-associated PLXND1. Intriguingly, the CCR also truncated PIK3CG, which in silico interacts with REVL3 encoded by the other known MBS-gene REV3L, and with the SEMA3A/PLXND1 complex via FLT1. Additional studies of other complex rearrangements may reveal whether the multiple breakpoints in germline chromothripsis may predispose to complex multigenic disorders.
Asunto(s)
Cromotripsis , Mutación de Línea Germinal , Glicoproteínas de Membrana/genética , Síndrome de Mobius/genética , Semaforinas/genética , Puntos de Rotura del Cromosoma , Resultado Fatal , Reordenamiento Génico , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Masculino , Persona de Mediana Edad , Semaforina-3A/genéticaRESUMEN
Pathogenic variants in the X-linked gene ZC4H2, which encodes a zinc-finger protein, cause an infrequently described syndromic form of arthrogryposis multiplex congenita (AMC) with central and peripheral nervous system involvement. We present genetic and detailed phenotypic information on 23 newly identified families and simplex cases that include 19 affected females from 18 families and 14 affected males from nine families. Of note, the 15 females with deleterious de novo ZC4H2 variants presented with phenotypes ranging from mild to severe, and their clinical features overlapped with those seen in affected males. By contrast, of the nine carrier females with inherited ZC4H2 missense variants that were deleterious in affected male relatives, four were symptomatic. We also compared clinical phenotypes with previously published cases of both sexes and provide an overview on 48 males and 57 females from 42 families. The spectrum of ZC4H2 defects comprises novel and recurrent mostly inherited missense variants in affected males, and de novo splicing, frameshift, nonsense, and partial ZC4H2 deletions in affected females. Pathogenicity of two newly identified missense variants was further supported by studies in zebrafish. We propose ZC4H2 as a good candidate for early genetic testing of males and females with a clinical suspicion of fetal hypo-/akinesia and/or (neurogenic) AMC.
Asunto(s)
Artrogriposis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación , Proteínas Nucleares/genética , Animales , Codón sin Sentido , Modelos Animales de Enfermedad , Femenino , Mutación del Sistema de Lectura , Genes Ligados a X , Predisposición Genética a la Enfermedad , Humanos , Masculino , Mutación Missense , Linaje , Fenotipo , Eliminación de Secuencia , Caracteres Sexuales , Pez CebraRESUMEN
Neurodevelopmental delay and intellectual disability (ID) can arise from numerous genetic defects. To date, variants in the EXOSC gene family have been associated with such disorders. Using next-generation sequencing (NGS), known and novel variants in this gene family causing autosomal recessive ID (ARID) have been identified in five Iranian families. By collecting clinical information on these families and comparing their phenotypes with previously reported patients, we further describe the clinical variability of ARID resulting from alterations in the EXOSC gene family, and emphasize the role of RNA processing dysregulation in ARID.
Asunto(s)
Complejo Multienzimático de Ribonucleasas del Exosoma/genética , Genes Recesivos , Discapacidad Intelectual/genética , Niño , Preescolar , Estudios de Cohortes , Consanguinidad , Familia , Femenino , Humanos , Lactante , Discapacidad Intelectual/patología , Discapacidad Intelectual/fisiopatología , Irán , Masculino , Mutación , Linaje , Secuenciación del ExomaRESUMEN
In outbred Western populations, most individuals with intellectual disability (ID) are sporadic cases, dominant de novo mutations (DNM) are frequent, and autosomal recessive ID (ARID) is very rare. Because of the high rate of parental consanguinity, which raises the risk for ARID and other recessive disorders, the prevalence of ID is significantly higher in near- and middle-east countries. Indeed, homozygosity mapping and sequencing in consanguineous families have already identified a plethora of ARID genes, but because of the design of these studies, DNMs could not be systematically assessed, and the proportion of cases that are potentially preventable by avoiding consanguineous marriages or through carrier testing is hitherto unknown. This prompted us to perform whole-exome sequencing in 100 sporadic ID patients from Iran and their healthy consanguineous parents. In 61 patients, we identified apparently causative changes in known ID genes. Of these, 44 were homozygous recessive and 17 dominant DNMs. Assuming that the DNM rate is stable, these results suggest that parental consanguinity raises the ID risk about 3.6-fold, and about 4.1 to 4.25-fold for children of first-cousin unions. These results do not rhyme with recent opinions that consanguinity-related health risks are generally small and have been "overstated" in the past.
Asunto(s)
Genes Recesivos , Endogamia , Discapacidad Intelectual/genética , Consanguinidad , Exoma/genética , Familia , Femenino , Homocigoto , Humanos , Discapacidad Intelectual/epidemiología , Discapacidad Intelectual/patología , Irán/epidemiología , Masculino , Medio Oriente/epidemiología , Mutación , Linaje , Secuenciación del ExomaRESUMEN
Intellectual disability (ID), a genetically and clinically heterogeneous disorder, affects 1%-3% of the general population and is a major health problem, especially in developing countries and in populations with a high frequency of consanguineous marriage. Using whole exome sequencing, a homozygous missense variation (c.3264G>C, p.W1088C) in a plausible disease causing gene, GPR126, was identified in two patients presenting with profound ID, severe speech impairment, microcephaly, seizures during infancy, and spasticity accompanied by cerebellar hypoplasia. The role of GPR126 in radial sorting and myelination in Schwann cells suggests a mechanism of pathogenesis for ID. Involvement of GPR126 in lethal congenital contracture syndrome 9 has been identified previously, but this is the first report of a plausible candidate gene, GPR126, in ID.
Asunto(s)
Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Receptores Acoplados a Proteínas G/genética , Adolescente , Cerebelo/anomalías , Cerebelo/fisiopatología , Consanguinidad , Discapacidades del Desarrollo/genética , Discapacidades del Desarrollo/fisiopatología , Genes Recesivos/genética , Humanos , Lactante , Discapacidad Intelectual/fisiopatología , Masculino , Microcefalia/genética , Microcefalia/fisiopatología , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/fisiopatología , Linaje , Células de Schwann/patología , Convulsiones/genética , Convulsiones/fisiopatología , Trastornos del Habla/genética , Trastornos del Habla/fisiopatología , Secuenciación del ExomaRESUMEN
Export of mRNA from the cell nucleus to the cytoplasm is essential for protein synthesis, a process vital to all living eukaryotic cells. mRNA export is highly conserved and ubiquitous. Mutations affecting mRNA and mRNA processing or export factors, which cause aberrant retention of mRNAs in the nucleus, are thus emerging as contributors to an important class of human genetic disorders. Here, we report that variants in THOC2, which encodes a subunit of the highly conserved TREX mRNA-export complex, cause syndromic intellectual disability (ID). Affected individuals presented with variable degrees of ID and commonly observed features included speech delay, elevated BMI, short stature, seizure disorders, gait disturbance, and tremors. X chromosome exome sequencing revealed four missense variants in THOC2 in four families, including family MRX12, first ascertained in 1971. We show that two variants lead to decreased stability of THOC2 and its TREX-complex partners in cells derived from the affected individuals. Protein structural modeling showed that the altered amino acids are located in the RNA-binding domains of two complex THOC2 structures, potentially representing two different intermediate RNA-binding states of THOC2 during RNA transport. Our results show that disturbance of the canonical molecular pathway of mRNA export is compatible with life but results in altered neuronal development with other comorbidities.
Asunto(s)
Transporte Activo de Núcleo Celular/genética , Cromosomas Humanos X/genética , Discapacidad Intelectual Ligada al Cromosoma X/genética , Modelos Moleculares , Mutación Missense/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Secuencia de Aminoácidos , Secuencia de Bases , Humanos , Discapacidad Intelectual Ligada al Cromosoma X/patología , Datos de Secuencia Molecular , Linaje , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/química , Análisis de Secuencia de ADN , SíndromeRESUMEN
We describe an X-linked genetic syndrome associated with mutations in TAF1 and manifesting with global developmental delay, intellectual disability (ID), characteristic facial dysmorphology, generalized hypotonia, and variable neurologic features, all in male individuals. Simultaneous studies using diverse strategies led to the identification of nine families with overlapping clinical presentations and affected by de novo or maternally inherited single-nucleotide changes. Two additional families harboring large duplications involving TAF1 were also found to share phenotypic overlap with the probands harboring single-nucleotide changes, but they also demonstrated a severe neurodegeneration phenotype. Functional analysis with RNA-seq for one of the families suggested that the phenotype is associated with downregulation of a set of genes notably enriched with genes regulated by E-box proteins. In addition, knockdown and mutant studies of this gene in zebrafish have shown a quantifiable, albeit small, effect on a neuronal phenotype. Our results suggest that mutations in TAF1 play a critical role in the development of this X-linked ID syndrome.
Asunto(s)
Discapacidades del Desarrollo/genética , Histona Acetiltransferasas/genética , Discapacidad Intelectual/genética , Enfermedades Neurodegenerativas/genética , Factores Asociados con la Proteína de Unión a TATA/genética , Factor de Transcripción TFIID/genética , Adolescente , Animales , Niño , Preescolar , Discapacidades del Desarrollo/metabolismo , Discapacidades del Desarrollo/patología , Modelos Animales de Enfermedad , Elementos E-Box , Facies , Familia , Regulación de la Expresión Génica , Histona Acetiltransferasas/metabolismo , Humanos , Lactante , Patrón de Herencia , Discapacidad Intelectual/metabolismo , Discapacidad Intelectual/patología , Masculino , Mutación , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Linaje , Fenotipo , Transducción de Señal , Factores Asociados con la Proteína de Unión a TATA/metabolismo , Factor de Transcripción TFIID/metabolismo , Adulto Joven , Pez CebraRESUMEN
Genetic epilepsies are caused by mutations in a range of different genes, many of them encoding ion channels, receptors or transporters. While the number of detected variants and genes increased dramatically in the recent years, pleiotropic effects have also been recognized, revealing that clinical syndromes with various degrees of severity arise from a single gene, a single mutation, or from different mutations showing similar functional defects. Accordingly, several genes coding for GABAA receptor subunits have been linked to a spectrum of benign to severe epileptic disorders and it was shown that a loss of function presents the major correlated pathomechanism. Here, we identified six variants in GABRA3 encoding the α3-subunit of the GABAA receptor. This gene is located on chromosome Xq28 and has not been previously associated with human disease. Five missense variants and one microduplication were detected in four families and two sporadic cases presenting with a range of epileptic seizure types, a varying degree of intellectual disability and developmental delay, sometimes with dysmorphic features or nystagmus. The variants co-segregated mostly but not completely with the phenotype in the families, indicating in some cases incomplete penetrance, involvement of other genes, or presence of phenocopies. Overall, males were more severely affected and there were three asymptomatic female mutation carriers compared to only one male without a clinical phenotype. X-chromosome inactivation studies could not explain the phenotypic variability in females. Three detected missense variants are localized in the extracellular GABA-binding NH2-terminus, one in the M2-M3 linker and one in the M4 transmembrane segment of the α3-subunit. Functional studies in Xenopus laevis oocytes revealed a variable but significant reduction of GABA-evoked anion currents for all mutants compared to wild-type receptors. The degree of current reduction correlated partially with the phenotype. The microduplication disrupted GABRA3 expression in fibroblasts of the affected patient. In summary, our results reveal that rare loss-of-function variants in GABRA3 increase the risk for a varying combination of epilepsy, intellectual disability/developmental delay and dysmorphic features, presenting in some pedigrees with an X-linked inheritance pattern.