Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 18(3): 202-210, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28144031

RESUMEN

An emerging body of evidence indicates that post-transcriptional gene regulation relies not only on the sequence of mRNAs but also on their folding into intricate secondary structures and on the chemical modifications of the RNA bases. These features, which are highly dynamic and interdependent, exert direct control over the transcriptome and thereby influence many aspects of cell function. Here, we consider how the coupling of RNA modifications and structures shapes RNA-protein interactions at different steps of the gene expression process.


Asunto(s)
Proteínas/genética , ARN Guía de Kinetoplastida/química , ARN Guía de Kinetoplastida/metabolismo , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Empalme de Proteína , Proteínas/metabolismo , Estabilidad del ARN , ARN Mensajero/metabolismo
2.
Nucleic Acids Res ; 51(5): 2397-2414, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36744439

RESUMEN

The intestinal epithelial regeneration is driven by intestinal stem cells under homeostatic conditions. Differentiated intestinal epithelial cells, such as Paneth cells, are capable of acquiring multipotency and contributing to regeneration upon the loss of intestinal stem cells. Paneth cells also support intestinal stem cell survival and regeneration. We report here that depletion of an RNA-binding protein named polypyrimidine tract binding protein 1 (PTBP1) in mouse intestinal epithelial cells causes intestinal stem cell death and epithelial regeneration failure. Mechanistically, we show that PTBP1 inhibits neuronal-like splicing programs in intestinal crypt cells, which is critical for maintaining intestinal stem cell stemness. This function is achieved at least in part through promoting the non-productive splicing of its paralog PTBP2. Moreover, PTBP1 inhibits the expression of an AKT inhibitor PHLDA3 in Paneth cells and permits AKT activation, which presumably maintains Paneth cell plasticity and function in supporting intestinal stem cell niche. We show that PTBP1 directly binds to a CU-rich region in the 3' UTR of Phlda3, which we demonstrate to be critical for downregulating the mRNA and protein levels of Phlda3. Our results thus reveal the multifaceted in vivo regulation of intestinal epithelial regeneration by PTBP1 at the post-transcriptional level.


Asunto(s)
Regulación de la Expresión Génica , Ribonucleoproteínas Nucleares Heterogéneas , Proteínas Proto-Oncogénicas c-akt , Animales , Ratones , Diferenciación Celular , Ribonucleoproteínas Nucleares Heterogéneas/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Proteína de Unión al Tracto de Polipirimidina/genética , Proteína de Unión al Tracto de Polipirimidina/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Regeneración/genética , Empalme del ARN
3.
Genome Res ; 31(4): 576-591, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33649154

RESUMEN

The adult liver has an exceptional ability to regenerate, but how it maintains its specialized functions during regeneration is unclear. Here, we used partial hepatectomy (PHx) in tandem with single-cell transcriptomics to track cellular transitions and heterogeneities of ∼22,000 liver cells through the initiation, progression, and termination phases of mouse liver regeneration. Our results uncovered that, following PHx, a subset of hepatocytes transiently reactivates an early-postnatal-like gene expression program to proliferate, while a distinct population of metabolically hyperactive cells appears to compensate for any temporary deficits in liver function. Cumulative EdU labeling and immunostaining of metabolic, portal, and central vein-specific markers revealed that hepatocyte proliferation after PHx initiates in the midlobular region before proceeding toward the periportal and pericentral areas. We further demonstrate that portal and central vein proximal hepatocytes retain their metabolically active state to preserve essential liver functions while midlobular cells proliferate nearby. Through combined analysis of gene regulatory networks and cell-cell interaction maps, we found that regenerating hepatocytes redeploy key developmental regulons, which are guided by extensive ligand-receptor-mediated signaling events between hepatocytes and nonparenchymal cells. Altogether, our study offers a detailed blueprint of the intercellular crosstalk and cellular reprogramming that balances the metabolic and proliferative requirements of a regenerating liver.


Asunto(s)
Plasticidad de la Célula , Regeneración Hepática , Hígado/citología , Hígado/metabolismo , Animales , Proliferación Celular , Hepatectomía , Hepatocitos/citología , Hepatocitos/metabolismo , Ratones , Análisis de la Célula Individual , Transcriptoma
4.
Dev Biol ; 491: 13-30, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36049533

RESUMEN

Corneal Epithelial Stem Cells (CESCs) and their proliferative progeny, the Transit Amplifying Cells (TACs), are responsible for homeostasis and maintaining corneal transparency. Owing to our limited knowledge of cell fates and gene activity within the cornea, the search for unique markers to identify and isolate these cells remains crucial for ocular surface reconstruction. We performed single-cell RNA sequencing of corneal cells from larval and adult stages of Xenopus. Our results indicate that as the cornea develops and matures, there is an increase in cellular diversity, which is accompanied by a substantial shift in transcriptional profile, gene regulatory network and cell-cell communication dynamics. Our data also reveals several novel genes expressed in corneal cells and changes in gene expression during corneal differentiation at both developmental time-points. Importantly, we identify specific basal cell clusters in both the larval and adult cornea that comprise a relatively undifferentiated cell type and express distinct stem cell markers, which we propose are the putative larval and adult CESCs, respectively. This study offers a detailed atlas of single-cell transcriptomes in the frog cornea. In the future, this work will be useful to elucidate the function of novel genes in corneal epithelial homeostasis, wound healing and regeneration.


Asunto(s)
Epitelio Corneal , Animales , Córnea , Epitelio Corneal/metabolismo , Larva/genética , Larva/metabolismo , Células Madre/metabolismo , Xenopus laevis/genética , Xenopus laevis/metabolismo
5.
Biochem Soc Trans ; 51(3): 1097-1109, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37314029

RESUMEN

Alternative splicing is a broad and evolutionarily conserved mechanism to diversify gene expression and functionality. The process relies on RNA binding proteins (RBPs) to recognize and bind target sequences in pre-mRNAs, which allows for the inclusion or skipping of various alternative exons. One recently discovered family of RBPs is the epithelial splicing regulatory proteins (ESRP) 1 and 2. Here, we discuss the structure and physiological function of the ESRPs in a variety of contexts. We emphasize the current understanding of their splicing activities, using the classic example of fibroblast growth factor receptor 2 mutually exclusive splicing. We also describe the mechanistic roles of ESRPs in coordinating the splicing and functional output of key signaling pathways that support the maintenance of, or shift between, epithelial and mesenchymal cell states. In particular, we highlight their functions in the development of mammalian limbs, the inner ear, and craniofacial structure while discussing the genetic and biochemical evidence that showcases their conserved roles in tissue regeneration, disease, and cancer pathogenesis.


Asunto(s)
Empalme Alternativo , Neoplasias , Animales , Humanos , Factores de Transcripción/metabolismo , Empalme del ARN , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Mamíferos/metabolismo
6.
Semin Cell Dev Biol ; 100: 74-87, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31980376

RESUMEN

Recent advances in genetics and genomics have reinvigorated the field of liver regeneration. It is now possible to combine lineage-tracing with genome-wide studies to genetically mark individual liver cells and their progenies and detect precise changes in their genome, transcriptome, and proteome under normal versus regenerative settings. The recent use of single-cell RNA sequencing methodologies in model organisms has, in some ways, transformed our understanding of the cellular and molecular biology of liver regeneration. Here, we review the latest strides in our knowledge of general principles that coordinate regeneration of the liver and reflect on some conflicting evidence and controversies surrounding this topic. We consider the prominent mechanisms that stimulate homeostasis-related vis-à-vis injury-driven regenerative responses, highlight the likely cellular sources/depots that reconstitute the liver following various injuries and discuss the extrinsic and intrinsic signals that direct liver cells to proliferate, de-differentiate, or trans-differentiate while the tissue recovers from acute or chronic damage.


Asunto(s)
Regeneración Hepática , Hígado/citología , Hígado/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Humanos
7.
RNA ; 26(11): 1603-1620, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32675111

RESUMEN

Cellular quiescence and cell cycle reentry regulate vital biological processes such as cellular development and tissue homeostasis and are controlled by precise regulation of gene expression. The roles of long noncoding RNAs (lncRNAs) during these processes remain to be elucidated. By performing genome-wide transcriptome analyses, we identify differential expression of several hundreds of lncRNAs, including a significant number of the less-characterized class of microRNA-host-gene (MIRHG) lncRNAs or lnc-MIRHGs, during cellular quiescence and cell cycle reentry in human diploid fibroblasts. We observe that MIR222HG lncRNA displays serum-stimulated RNA processing due to enhanced splicing of the host nascent pri-MIR222HG transcript. The pre-mRNA splicing factor SRSF1 negatively regulates the microprocessor-catalyzed cleavage of pri-miR-222, thereby increasing the cellular pool of the mature MIR222HG Association of SRSF1 to pri-MIR222HG, including to a mini-exon, which partially overlaps with the primary miR-222 precursor, promotes serum-stimulated splicing over microRNA processing of MIR222HG Further, we observe that the increased levels of spliced MIR222HG in serum-stimulated cells promote the cell cycle reentry post quiescence in a microRNA-independent manner. MIR222HG interacts with DNM3OS, another lncRNA whose expression is elevated upon serum-stimulation, and promotes cell cycle reentry. The double-stranded RNA binding protein ILF3/2 complex facilitates MIR222HG:DNM3OS RNP complex assembly, thereby promoting DNM3OS RNA stability. Our study identifies a novel mechanism whereby competition between the splicing and microprocessor machinery modulates the serum-induced RNA processing of MIR222HG, which dictates cell cycle reentry.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Pulmón/citología , ARN Largo no Codificante/genética , Factores de Empalme Serina-Arginina/metabolismo , Suero/química , Ciclo Celular , Línea Celular , Fibroblastos/química , Fibroblastos/citología , Células HEK293 , Humanos , Pulmón/química , Proteína del Factor Nuclear 45/metabolismo , Proteínas del Factor Nuclear 90/metabolismo , Procesamiento Postranscripcional del ARN , Empalme del ARN , Análisis de Secuencia de ARN , Imagen Individual de Molécula , Regulación hacia Arriba , Secuenciación del Exoma
8.
Mol Cell ; 55(4): 592-603, 2014 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-25087874

RESUMEN

Alternative splicing plays important regulatory roles during periods of physiological change. During development, a large number of genes coordinately express protein isoform transitions regulated by alternative splicing; however, the mechanisms that coordinate splicing and the functional integration of the resultant tissue-specific protein isoforms are typically unknown. Here we show that the conserved Rbfox2 RNA binding protein regulates 30% of the splicing transitions observed during myogenesis and is required for the specific step of myoblast fusion. Integration of Rbfox2-dependent splicing outcomes from RNA-seq with Rbfox2 iCLIP data identified Mef2d and Rock2 as Rbfox2 splicing targets. Restored activities of Mef2d and Rock2 rescued myoblast fusion in Rbfox2-depleted cultures, demonstrating functional cooperation of protein isoforms generated by coordinated alterative splicing. The results demonstrate that coordinated alternative splicing by a single RNA binding protein modulates transcription (Mef2d) and cell signaling (Rock2) programs to drive tissue-specific functions (cell fusion) to promote a developmental transition.


Asunto(s)
Empalme Alternativo/genética , Factores de Transcripción MEF2/genética , Desarrollo de Músculos/genética , Mioblastos/fisiología , Proteínas de Unión al ARN/fisiología , ARN/genética , Quinasas Asociadas a rho/genética , Empalme Alternativo/fisiología , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Secuencia Conservada , Regulación de la Expresión Génica , Células HEK293 , Humanos , Factores de Transcripción MEF2/metabolismo , Ratones , Desarrollo de Músculos/fisiología , Especificidad de Órganos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Análisis de Secuencia de ARN , Quinasas Asociadas a rho/metabolismo
9.
Proc Natl Acad Sci U S A ; 116(18): 8709-8714, 2019 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-30975744

RESUMEN

Developing highly active, multivalent ligands as therapeutic agents is challenging because of delivery issues, limited cell permeability, and toxicity. Here, we report intrinsically cell-penetrating multivalent ligands that target the trinucleotide repeat DNA and RNA in myotonic dystrophy type 1 (DM1), interrupting the disease progression in two ways. The oligomeric ligands are designed based on the repetitive structure of the target with recognition moieties alternating with bisamidinium groove binders to provide an amphiphilic and polycationic structure, mimicking cell-penetrating peptides. Multiple biological studies suggested the success of our multivalency strategy. The designed oligomers maintained cell permeability and exhibited no apparent toxicity both in cells and in mice at working concentrations. Furthermore, the oligomers showed important activities in DM1 cells and in a DM1 liver mouse model, reducing or eliminating prominent DM1 features. Phenotypic recovery of the climbing defect in adult DM1 Drosophila was also observed. This design strategy should be applicable to other repeat expansion diseases and more generally to DNA/RNA-targeted therapeutics.


Asunto(s)
Distrofia Miotónica/tratamiento farmacológico , Proteínas de Unión al ARN/metabolismo , Repeticiones de Trinucleótidos , Animales , ADN , Proteínas de Unión al ADN , Drosophila melanogaster , Células HeLa , Humanos , Ligandos , Hígado/metabolismo , Ratones , Mioblastos/fisiología , Distrofia Miotónica/genética , Proteínas con Motivos de Reconocimiento de ARN , Proteínas de Unión al ARN/química
10.
J Neurochem ; 157(6): 1809-1820, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33064840

RESUMEN

Endoplasmic reticulum (ER) stress occurs when protein folding or maturation is disrupted. A malfunction in the ER stress response can lead to cell death and has been observed in many neurological diseases. However, how the ER stress response is regulated in neuronal cells remains largely unclear. Here, we studied an E3 ubiquitin ligase named neural precursor cell expressed developmentally down-regulated protein 4-like (Nedd4-2). Nedd4-2 is highly expressed in the brain and has a high affinity toward ubiquitinating membrane-bound proteins. We first utilized unbiased proteomic profiling with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) of isolated membrane fractions from mouse whole brains to identify novel targets of Nedd4-2. Through this screen, we found that the expression and ubiquitination of ribosomal proteins are regulated by Nedd4-2 and we confirmed an association between Nedd4-2 and ribosomes through ribosome sedimentation and polysome profiling. Further, we utilized immunoprecipitation and western blotting to show that induction of ER stress promotes an association between Nedd4-2 and ribosomal proteins, which is mediated through dephosphorylation of Nedd4-2 at serine-342. This increased interaction between Nedd4-2 and ribosomal proteins in turn mediates ER stress-associated translational suppression. In summary, the results of this study demonstrate a novel regulatory mechanism underlying the ER stress response and a novel function of Nedd4-2 in translational control. Our findings may shed light on neurological diseases in which the ER stress response or the function of Nedd4-2 is dysregulated.


Asunto(s)
Estrés del Retículo Endoplásmico/fisiología , Ubiquitina-Proteína Ligasas Nedd4/metabolismo , Biosíntesis de Proteínas/fisiología , Proteómica/métodos , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Ubiquitina-Proteína Ligasas Nedd4/genética , Ubiquitina-Proteína Ligasas/genética
12.
Development ; 144(20): 3755-3765, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-28870987

RESUMEN

In the developing embryo, primordial germ cells (PGCs) represent the exclusive progenitors of the gametes, and their loss results in adult infertility. During early development, PGCs are exposed to numerous signals that specify somatic cell fates. To prevent somatic differentiation, PGCs must transiently silence their genome, an early developmental process that requires Nanos activity. However, it is unclear how Nanos translation is regulated in developing embryos. We report here that translation of nanos1 after fertilization requires Dead-end 1 (Dnd1), a vertebrate-specific germline RNA-binding protein. We provide evidence that Dnd1 protein, expression of which is low in oocytes, but increases dramatically after fertilization, directly interacts with, and relieves the inhibitory function of eukaryotic initiation factor 3f, a repressive component in the 43S preinitiation complex. This work uncovers a novel translational regulatory mechanism that is fundamentally important for germline development.


Asunto(s)
Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis , Animales , Diferenciación Celular , Femenino , Fertilización , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Oocitos/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Plásmidos/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Transducción de Señal
13.
Methods ; 155: 131-139, 2019 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-30500367

RESUMEN

The regulation of gene expression occurs through complex relationships between transcription, processing, turnover, and translation, which are only beginning to be elucidated. We know that at least for certain messenger (m) RNAs, processing, modifications, and sequence elements can greatly influence their translational output through recognition by translation and turn-over machinery. Recently, we and others have combined high-throughput sequencing technologies with traditional biochemical methods of studying translation to extend our understanding of these relationships. Additionally, there is growing importance given to how these processes may be regulated across varied cell types as a means to achieve tissue-specific expression of proteins. Here, we provide an in-depth methodology for polysome profiling to dissect the composition of mRNAs and proteins that make up the translatome from both whole tissues and a specific cell type isolated from mammalian tissue. Also, we provide a detailed computational workflow for the analysis of the next-generation sequencing data generated from these experiments.


Asunto(s)
Biología Computacional/métodos , Polirribosomas/genética , Biosíntesis de Proteínas , ARN Mensajero/genética , Análisis de Secuencia de ARN/estadística & datos numéricos , Animales , Encéfalo/citología , Encéfalo/metabolismo , Fraccionamiento Celular/métodos , Centrifugación por Gradiente de Densidad/métodos , Ontología de Genes , Redes Reguladoras de Genes , Hepatocitos/citología , Hepatocitos/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Hígado/citología , Hígado/metabolismo , Ratones , Anotación de Secuencia Molecular , Miocardio/citología , Miocardio/metabolismo , Miocitos Cardíacos/citología , Miocitos Cardíacos/metabolismo , Neuronas/citología , Neuronas/metabolismo , Especificidad de Órganos , Polirribosomas/clasificación , Polirribosomas/metabolismo , ARN Mensajero/metabolismo
14.
Hum Mol Genet ; 26(20): 3895-3908, 2017 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-29016848

RESUMEN

Activating Group 1 (Gp1) metabotropic glutamate receptors (mGluRs), including mGluR1 and mGluR5, elicits translation-dependent neural plasticity mechanisms that are crucial to animal behavior and circuit development. Dysregulated Gp1 mGluR signaling has been observed in numerous neurological and psychiatric disorders. However, the molecular pathways underlying Gp1 mGluR-dependent plasticity mechanisms are complex and have been elusive. In this study, we identified a novel mechanism through which Gp1 mGluR mediates protein translation and neural plasticity. Using a multi-electrode array (MEA) recording system, we showed that activating Gp1 mGluR elevates neural network activity, as demonstrated by increased spontaneous spike frequency and burst activity. Importantly, we validated that elevating neural network activity requires protein translation and is dependent on fragile X mental retardation protein (FMRP), the protein that is deficient in the most common inherited form of mental retardation and autism, fragile X syndrome (FXS). In an effort to determine the mechanism by which FMRP mediates protein translation and neural network activity, we demonstrated that a ubiquitin E3 ligase, murine double minute-2 (Mdm2), is required for Gp1 mGluR-induced translation and neural network activity. Our data showed that Mdm2 acts as a translation suppressor, and FMRP is required for its ubiquitination and down-regulation upon Gp1 mGluR activation. These data revealed a novel mechanism by which Gp1 mGluR and FMRP mediate protein translation and neural network activity, potentially through de-repressing Mdm2. Our results also introduce an alternative way for understanding altered protein translation and brain circuit excitability associated with Gp1 mGluR in neurological diseases such as FXS.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Red Nerviosa/fisiología , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Animales , Técnicas de Cultivo de Célula , Regulación hacia Abajo , Hipocampo/metabolismo , Humanos , Ratones , Ratones Noqueados , Red Nerviosa/metabolismo , Neuronas/metabolismo , Conejos , Receptor del Glutamato Metabotropico 5/metabolismo , Transducción de Señal
15.
PLoS Biol ; 13(7): e1002197, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26176594

RESUMEN

Two insults often underlie a variety of eye diseases including glaucoma, optic atrophy, and retinal degeneration--defects in mitochondrial function and aberrant Rhodopsin trafficking. Although mitochondrial defects are often associated with oxidative stress, they have not been linked to Rhodopsin trafficking. In an unbiased forward genetic screen designed to isolate mutations that cause photoreceptor degeneration, we identified mutations in a nuclear-encoded mitochondrial gene, ppr, a homolog of human LRPPRC. We found that ppr is required for protection against light-induced degeneration. Its function is essential to maintain membrane depolarization of the photoreceptors upon repetitive light exposure, and an impaired phototransduction cascade in ppr mutants results in excessive Rhodopsin1 endocytosis. Moreover, loss of ppr results in a reduction in mitochondrial RNAs, reduced electron transport chain activity, and reduced ATP levels. Oxidative stress, however, is not induced. We propose that the reduced ATP level in ppr mutants underlies the phototransduction defect, leading to increased Rhodopsin1 endocytosis during light exposure, causing photoreceptor degeneration independent of oxidative stress. This hypothesis is bolstered by characterization of two other genes isolated in the screen, pyruvate dehydrogenase and citrate synthase. Their loss also causes a light-induced degeneration, excessive Rhodopsin1 endocytosis and reduced ATP without concurrent oxidative stress, unlike many other mutations in mitochondrial genes that are associated with elevated oxidative stress and light-independent photoreceptor demise.


Asunto(s)
Proteínas de Drosophila/genética , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Células Fotorreceptoras de Invertebrados/efectos de la radiación , Enfermedades de la Retina/genética , Adenosina Trifosfato/biosíntesis , Animales , Citrato (si)-Sintasa/genética , Drosophila , Proteínas de Drosophila/metabolismo , Electrorretinografía , Endocitosis , Mitocondrias/genética , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo , Complejo Piruvato Deshidrogenasa/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Rodopsina/metabolismo , Visión Ocular
16.
PLoS Genet ; 11(4): e1005166, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25906188

RESUMEN

Alternative cleavage and polyadenylation (APA) results in mRNA isoforms containing different 3' untranslated regions (3'UTRs) and/or coding sequences. How core cleavage/polyadenylation (C/P) factors regulate APA is not well understood. Using siRNA knockdown coupled with deep sequencing, we found that several C/P factors can play significant roles in 3'UTR-APA. Whereas Pcf11 and Fip1 enhance usage of proximal poly(A) sites (pAs), CFI-25/68, PABPN1 and PABPC1 promote usage of distal pAs. Strong cis element biases were found for pAs regulated by CFI-25/68 or Fip1, and the distance between pAs plays an important role in APA regulation. In addition, intronic pAs are substantially regulated by splicing factors, with U1 mostly inhibiting C/P events in introns near the 5' end of gene and U2 suppressing those in introns with features for efficient splicing. Furthermore, PABPN1 inhibits expression of transcripts with pAs near the transcription start site (TSS), a property possibly related to its role in RNA degradation. Finally, we found that groups of APA events regulated by C/P factors are also modulated in cell differentiation and development with distinct trends. Together, our results support an APA code where an APA event in a given cellular context is regulated by a number of parameters, including relative location to the TSS, splicing context, distance between competing pAs, surrounding cis elements and concentrations of core C/P factors.


Asunto(s)
Diferenciación Celular/genética , Proteína I de Unión a Poli(A)/genética , Poliadenilación/genética , Empalme del ARN/genética , Regiones no Traducidas 3'/genética , Exones , Regulación de la Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Intrones/genética , Proteína I de Unión a Poli(A)/biosíntesis , Estabilidad del ARN/genética , ARN Mensajero/genética
17.
BMC Biol ; 15(1): 54, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28662698

RESUMEN

BACKGROUND: Moloney leukemia virus 10 (Mov10) is an RNA helicase that mediates access of the RNA-induced silencing complex to messenger RNAs (mRNAs). Until now, its role as an RNA helicase and as a regulator of retrotransposons has been characterized exclusively in cell lines. We investigated the role of Mov10 in the mouse brain by examining its expression over development and attempting to create a Mov10 knockout mouse. Loss of both Mov10 copies led to early embryonic lethality. RESULTS: Mov10 was significantly elevated in postnatal murine brain, where it bound retroelement RNAs and mRNAs. Mov10 suppressed retroelements in the nucleus by directly inhibiting complementary DNA synthesis, while cytosolic Mov10 regulated cytoskeletal mRNAs to influence neurite outgrowth. We verified this important function by observing reduced dendritic arborization in hippocampal neurons from the Mov10 heterozygote mouse and shortened neurites in the Mov10 knockout Neuro2A cells. Knockdown of Fmrp also resulted in shortened neurites. Mov10, Fmrp, and Ago2 bound a common set of mRNAs in the brain. Reduced Mov10 in murine brain resulted in anxiety and increased activity in a novel environment, supporting its important role in the development of normal brain circuitry. CONCLUSIONS: Mov10 is essential for normal neuronal development and brain function. Mov10 preferentially binds RNAs involved in actin binding, neuronal projection, and cytoskeleton. This is a completely new and critically important function for Mov10 in neuronal development and establishes a precedent for Mov10 being an important candidate in neurological disorders that have underlying cytoarchitectural causes like autism and Alzheimer's disease.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Encéfalo/metabolismo , ARN Helicasas/genética , Retroelementos/genética , Animales , Masculino , Ratones/embriología , Ratones Endogámicos C57BL , Ratones Noqueados , ARN Helicasas/metabolismo
18.
Genes Dev ; 24(7): 653-8, 2010 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20299448

RESUMEN

Alternative splicing transitions have been identified recently as a conserved component of vertebrate heart remodeling during postnatal development. Here we report that the targeted deletion of Dicer, specifically in adult mouse myocardium, reveals the role of microRNAs (miRNAs) in regulating networks of postnatal splicing transitions and in maintaining adult splicing programs. We demonstrate a direct role for miR-23a/b in the dramatic postnatal down-regulation of CUGBP and ETR-3-like factor (CELF) proteins that regulate nearly half of developmentally regulated splicing transitions in the heart. These findings define a hierarchy in which rapid postnatal up-regulation of specific miRNAs controls expression of alternative splicing regulators and the subsequent splicing transitions of their downstream targets.


Asunto(s)
Empalme Alternativo/fisiología , Corazón/crecimiento & desarrollo , MicroARNs/metabolismo , Animales , Proteínas CELF1 , Línea Celular , ARN Helicasas DEAD-box/genética , Regulación hacia Abajo , Endorribonucleasas/genética , Técnicas de Silenciamiento del Gen , Ratones , MicroARNs/antagonistas & inhibidores , MicroARNs/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleasa III , Regulación hacia Arriba
19.
Nat Rev Genet ; 12(10): 715-29, 2011 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-21921927

RESUMEN

Genome-wide analyses of metazoan transcriptomes have revealed an unexpected level of mRNA diversity that is generated by alternative splicing. Recently, regulatory networks have been identified through which splicing promotes dynamic remodelling of the transcriptome to promote physiological changes, which involve robust and coordinated alternative splicing transitions. The regulation of splicing in yeast, worms, flies and vertebrates affects a variety of biological processes. The functional classes of genes that are regulated by alternative splicing include both those with widespread homeostatic activities and those with cell-type-specific functions. Alternative splicing can drive determinative physiological change or can have a permissive role by providing mRNA variability that is used by other regulatory mechanisms.


Asunto(s)
Empalme Alternativo/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Genes del Desarrollo/genética , Animales , Diferenciación Celular/genética , Diferenciación Celular/fisiología , División Celular/genética , División Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Humanos , Modelos Biológicos , Organogénesis/genética , Organogénesis/fisiología
20.
Dev Dyn ; 244(3): 377-90, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25504326

RESUMEN

Myotonic Dystrophy type 1 (DM1), the most prevalent adult onset muscular dystrophy, is a trinucleotide repeat expansion disease caused by CTG expansion in the 3'-UTR of DMPK gene. This expansion results in the expression of toxic gain-of-function RNA that forms ribonuclear foci and disrupts normal activities of RNA-binding proteins belonging to the MBNL and CELF families. Changes in alternative splicing, translation, localization, and mRNA stability due to sequestration of MBNL proteins and up-regulation of CELF1 are key to DM1 pathology. However, recent discoveries indicate that pathogenic mechanisms of DM1 involves many other factors as well, including repeat associated translation, activation of PKC-dependent signaling pathway, aberrant polyadenylation, and microRNA deregulation. Expression of the toxic repeat RNA culminates in the developmental remodeling of the transcriptome, which produces fetal isoforms of proteins that are unable to fulfill the physiological requirements of adult tissues. This review will describe advances in the understanding of DM1 pathogenesis as well as current therapeutic developments for DM1.


Asunto(s)
Regiones no Traducidas 3' , Distrofia Miotónica/embriología , Proteína Quinasa de Distrofia Miotónica/metabolismo , Expansión de Repetición de Trinucleótido , Animales , Proteínas CELF1 , Humanos , Distrofia Miotónica/genética , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA