Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(17): E1565-74, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23479634

RESUMEN

G-protein-coupled receptor (GPCR) activity gradients evoke important cell behavior but there is a dearth of methods to induce such asymmetric signaling in a cell. Here we achieved reversible, rapidly switchable patterns of spatiotemporally restricted GPCR activity in a single cell. We recruited properties of nonrhodopsin opsins--rapid deactivation, distinct spectral tuning, and resistance to bleaching--to activate native Gi, Gq, or Gs signaling in selected regions of a cell. Optical inputs were designed to spatiotemporally control levels of second messengers, IP3, phosphatidylinositol (3,4,5)-triphosphate, and cAMP in a cell. Spectrally selective imaging was accomplished to simultaneously monitor optically evoked molecular and cellular response dynamics. We show that localized optical activation of an opsin-based trigger can induce neurite initiation, phosphatidylinositol (3,4,5)-triphosphate increase, and actin remodeling. Serial optical inputs to neurite tips can refashion early neuron differentiation. Methods here can be widely applied to program GPCR-mediated cell behaviors.


Asunto(s)
Luz , Neuritas/metabolismo , Opsinas/efectos de la radiación , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/efectos de la radiación , AMP Cíclico/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Humanos , Opsinas/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Imagen de Lapso de Tiempo
2.
Proc Natl Acad Sci U S A ; 109(51): E3568-77, 2012 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-23213235

RESUMEN

Activation of G-protein heterotrimers by receptors at the plasma membrane stimulates ßγ-complex dissociation from the α-subunit and translocation to internal membranes. This intermembrane movement of lipid-modified proteins is a fundamental but poorly understood feature of cell signaling. The differential translocation of G-protein ßγ-subunit types provides a valuable experimental model to examine the movement of signaling proteins between membranes in a living cell. We used live cell imaging, mathematical modeling, and in vitro measurements of lipidated fluorescent peptide dissociation from vesicles to determine the mechanistic basis of the intermembrane movement and identify the interactions responsible for differential translocation kinetics in this family of evolutionarily conserved proteins. We found that the reversible translocation is mediated by the limited affinity of the ßγ-subunits for membranes. The differential kinetics of the ßγ-subunit types are determined by variations among a set of basic and hydrophobic residues in the γ-subunit types. G-protein signaling thus leverages the wide variation in membrane dissociation rates among different γ-subunit types to differentially control ßγ-translocation kinetics in response to receptor activation. The conservation of primary structures of γ-subunits across mammalian species suggests that there can be evolutionary selection for primary structures that confer specific membrane-binding affinities and consequent rates of intermembrane movement.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/química , Proteínas de Unión al GTP/química , Membranas Intracelulares/metabolismo , Secuencia de Aminoácidos , Membrana Celular/metabolismo , Dimerización , Colorantes Fluorescentes/química , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HeLa , Humanos , Cinética , Lípidos/química , Microscopía Fluorescente/métodos , Modelos Teóricos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Transporte de Proteínas , Homología de Secuencia de Aminoácido , Transducción de Señal
3.
Biophys J ; 107(1): 242-54, 2014 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-24988358

RESUMEN

G-protein ßγ subunits translocate reversibly from the plasma membrane to internal membranes on receptor activation. Translocation rates differ depending on the γ subunit type. There is limited understanding of the role of the differential rates of Gßγ translocation in modulating signaling dynamics in a cell. Bifurcation analysis of the calcium oscillatory network structure predicts that the translocation rate of a signaling protein can regulate the damping of system oscillation. Here, we examined whether the Gßγ translocation rate regulates calcium oscillations induced by G-protein-coupled receptor activation. Oscillations in HeLa cells expressing γ subunit types with different translocation rates were imaged and quantitated. The results show that differential Gßγ translocation rates can underlie the diversity in damping characteristics of calcium oscillations among cells. Mathematical modeling shows that a translocation embedded motif regulates damping of G-protein-mediated calcium oscillations consistent with experimental data. The current study indicates that such a motif may act as a tuning mechanism to design oscillations with varying damping patterns by using intracellular translocation of a signaling component.


Asunto(s)
Señalización del Calcio , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Modelos Biológicos , Membrana Celular/metabolismo , Retroalimentación Fisiológica , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/química , Células HeLa , Humanos
4.
eNeuro ; 11(7)2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38871457

RESUMEN

CRISPR/Cas9 gene editing represents an exciting avenue to study genes of unknown function and can be combined with genetically encoded tools such as fluorescent proteins, channelrhodopsins, DREADDs, and various biosensors to more deeply probe the function of these genes in different cell types. However, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 from a genomic locus affords space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three common tools in neuroscience: ChRonos, a channelrhodopsin, for studying synaptic transmission using optogenetics, GCaMP8f for recording Ca2+ transients using photometry, and mCherry for tracing axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens, glutamatergic neurons projecting from the ventral pallidum to the lateral habenula, dopaminergic neurons in the ventral tegmental area, and proprioceptive neurons in the periphery. This flexible approach could help identify and test the function of novel genes affecting synaptic transmission, circuit activity, or morphology with a single viral injection.


Asunto(s)
Sistemas CRISPR-Cas , Dependovirus , Edición Génica , Vectores Genéticos , Animales , Dependovirus/genética , Edición Génica/métodos , Ratones , Optogenética/métodos , Sistema Nervioso Central/metabolismo , Sistema Nervioso Periférico/metabolismo , Masculino , Ratones Endogámicos C57BL , Neuronas/metabolismo , Femenino , Ratones Transgénicos
5.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712231

RESUMEN

Single-cell multiomic techniques have sparked immense interest in developing a comprehensive multi-modal map of diverse neuronal cell types and their brain wide projections. However, investigating the spatial organization, transcriptional and epigenetic landscapes of brain wide projection neurons is hampered by the lack of efficient and easily adoptable tools. Here we introduce Projection-TAGs, a retrograde AAV platform that allows multiplex tagging of projection neurons using RNA barcodes. By using Projection-TAGs, we performed multiplex projection tracing of the mouse cortex and high-throughput single-cell profiling of the transcriptional and epigenetic landscapes of the cortical projection neurons. Projection-TAGs can be leveraged to obtain a snapshot of activity-dependent recruitment of distinct projection neurons and their molecular features in the context of a specific stimulus. Given its flexibility, usability, and compatibility, we envision that Projection-TAGs can be readily applied to build a comprehensive multi-modal map of brain neuronal cell types and their projections.

6.
Proc Natl Acad Sci U S A ; 107(25): 11417-22, 2010 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-20534534

RESUMEN

We show that receptor induced G protein betagamma subunit translocation from the plasma membrane to the Golgi allows a receptor to initiate fragmentation and regulate secretion. A lung epithelial cell line, A549, was shown to contain an endogenous translocating G protein gamma subunit and exhibit receptor-induced Golgi fragmentation. Receptor-induced Golgi fragmentation was inhibited by a shRNA specific to the endogenous translocating gamma subunit. A kinase defective protein kinase D and a phospholipase C beta inhibitor blocked receptor-induced Golgi fragmentation, suggesting a role for this process in secretion. Consistent with betagamma translocation dependence, fragmentation induced by receptor activation was inhibited by a dominant negative nontranslocating gamma3. Insulin secretion was shown to be induced by muscarinic receptor activation in a pancreatic beta cell line, NIT-1. Induction of insulin secretion was also inhibited by the dominant negative gamma3 subunit consistent with the Golgi fragmentation induced by betagamma complex translocation playing a role in secretion.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Aparato de Golgi/metabolismo , Animales , Línea Celular Tumoral , Genes Dominantes , Humanos , Insulina/metabolismo , Ratones , Microscopía Fluorescente/métodos , Microtúbulos/metabolismo , Fosfolipasa C beta/metabolismo , Proteína Quinasa C/metabolismo , Transporte de Proteínas , Receptores Muscarínicos/metabolismo , Transducción de Señal
7.
bioRxiv ; 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37873336

RESUMEN

Gene manipulation strategies using germline knockout, conditional knockout, and more recently CRISPR/Cas9 are crucial tools for advancing our understanding of the nervous system. However, traditional gene knockout approaches can be costly and time consuming, may lack cell-type specificity, and can induce germline recombination. Viral gene editing presents and an exciting alternative to more rapidly study genes of unknown function; however, current strategies to also manipulate or visualize edited cells are challenging due to the large size of Cas9 proteins and the limited packaging capacity of adeno-associated viruses (AAVs). To overcome these constraints, we have developed an alternative gene editing strategy using a single AAV vector and mouse lines that express Cre-dependent Cas9 to achieve efficient cell-type specific editing across the nervous system. Expressing Cre-dependent Cas9 in specific cell types in transgenic mouse lines affords more space to package guide RNAs for gene editing together with Cre-dependent, genetically encoded tools to manipulate, map, or monitor neurons using a single virus. We validated this strategy with three commonly used tools in neuroscience: ChRonos, a channelrhodopsin, for manipulating synaptic transmission using optogenetics; GCaMP8f for recording Ca2+ transients using fiber photometry, and mCherry for anatomical tracing of axonal projections. We tested these tools in multiple brain regions and cell types, including GABAergic neurons in the nucleus accumbens (NAc), glutamatergic neurons projecting from the ventral pallidum (VP) to the lateral habenula (LHb), dopaminergic neurons in the ventral tegmental area (VTA), and parvalbumin (PV)-positive proprioceptive neurons in the periphery. This flexible approach should be useful to identify novel genes that affect synaptic transmission, circuit activity, or morphology with a single viral injection.

8.
Biochem Biophys Res Commun ; 421(3): 605-11, 2012 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-22538369

RESUMEN

Heterotrimeric G proteins transduce signals sensed by transmembrane G protein coupled receptors (GPCRs). A subfamily of G protein ßγ subunit types has been shown to selectively translocate from the plasma membrane to internal membranes on receptor activation. Using 4D imaging we show here that Gßγ translocation is not restricted to some subunit types but rather all 12 members of the family of mammalian γ subunits are capable of supporting ßγ translocation. Translocation kinetics varies widely depending on the specific γ subunit type, with t(1/2) ranging from 10s to many minutes. Using fluorescence complementation, we show that the ß and γ subunits translocate as ßγ dimers with kinetics determined by the γ subunit type. The expression patterns of endogenous γ subunit types in HeLa cells, hippocampal neurons and cardiomyocytes are distinctly different. Consistent with these differences, the ßγ translocation rates vary widely. ßγ translocation rates exhibit the same γ subunit dependent trends regardless of the specific receptor type or cell type showing that the translocation rates are intrinsic to the γ subunit types. ßγ complexes with widely different rates of translocation had differential effects on muscarinic stimulation of GIRK channel activity. These results show that G protein ßγ translocation is a general response to activation of GPCRs and may play a role in regulating signaling activity.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Proteínas Bacterianas/metabolismo , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/agonistas , Canales de Potasio Rectificados Internamente Asociados a la Proteína G/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Células HeLa , Hipocampo/citología , Hipocampo/metabolismo , Humanos , Proteínas Luminiscentes/metabolismo , Miocitos Cardíacos/metabolismo , Neuronas/metabolismo , Transporte de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Muscarínicos/metabolismo
9.
Neuron ; 109(11): 1791-1809.e11, 2021 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-33979635

RESUMEN

Optical manipulations of genetically defined cell types have generated significant insights into the dynamics of neural circuits. While optogenetic activation has been relatively straightforward, rapid and reversible synaptic inhibition has proven more elusive. Here, we leveraged the natural ability of inhibitory presynaptic GPCRs to suppress synaptic transmission and characterize parapinopsin (PPO) as a GPCR-based opsin for terminal inhibition. PPO is a photoswitchable opsin that couples to Gi/o signaling cascades and is rapidly activated by pulsed blue light, switched off with amber light, and effective for repeated, prolonged, and reversible inhibition. PPO rapidly and reversibly inhibits glutamate, GABA, and dopamine release at presynaptic terminals. Furthermore, PPO alters reward behaviors in a time-locked and reversible manner in vivo. These results demonstrate that PPO fills a significant gap in the neuroscience toolkit for rapid and reversible synaptic inhibition and has broad utility for spatiotemporal control of inhibitory GPCR signaling cascades.


Asunto(s)
Inhibición Neural , Optogenética/métodos , Terminales Presinápticos/metabolismo , Recompensa , Transmisión Sináptica , Animales , Dopamina/metabolismo , Exocitosis , Proteínas de Peces/genética , Proteínas de Peces/metabolismo , Ácido Glutámico/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Ratones , Terminales Presinápticos/fisiología , Receptores Acoplados a Proteínas G/metabolismo , Opsinas de Bastones/genética , Opsinas de Bastones/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Dev Cell ; 46(1): 9-22.e4, 2018 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-29937389

RESUMEN

Cells migrate by applying rearward forces against extracellular media. It is unclear how this is achieved in amoeboid migration, which lacks adhesions typical of lamellipodia-driven mesenchymal migration. To address this question, we developed optogenetically controlled models of lamellipodia-driven and amoeboid migration. On a two-dimensional surface, migration speeds in both modes were similar. However, when suspended in liquid, only amoeboid cells exhibited rapid migration accompanied by rearward membrane flow. These cells exhibited increased endocytosis at the back and membrane trafficking from back to front. Genetic or pharmacological perturbation of this polarized trafficking inhibited migration. The ratio of cell migration and membrane flow speeds matched the predicted value from a model where viscous forces tangential to the cell-liquid interface propel the cell forward. Since this mechanism does not require specific molecular interactions with the surrounding medium, it can facilitate amoeboid migration observed in diverse microenvironments during immune function and cancer metastasis.


Asunto(s)
Membrana Celular/metabolismo , Movimiento Celular/fisiología , Seudópodos/fisiología , Actomiosina/metabolismo , Animales , Adhesión Celular/fisiología , Línea Celular Transformada , Endocitosis/fisiología , Ratones , Células RAW 264.7 , Receptores Acoplados a Proteínas G/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteína de Unión al GTP rhoA
11.
Cell Signal ; 18(10): 1758-68, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16517125

RESUMEN

On activation of a receptor the G protein betagamma complex translocates away from the receptor on the plasma membrane to the Golgi complex. The rate of translocation is influenced by the type of gamma subunit associated with the G protein. Complementary approaches--imaging living cells expressing fluorescent protein tagged G proteins and assaying reconstituted receptors and G proteins in vitro--were used to identify mechanisms at the basis of the translocation process. Translocation of Gbetagamma containing mutant gamma subunits with altered prenyl moieties showed that the differences in the prenyl moieties were not sufficient to explain the differential effects of geranylgeranylated gamma5 and farnesylated gamma11 on the translocation process. The translocation properties of Gbetagamma were altered dramatically by mutating the C terminal tail region of the gamma subunit. The translocation characteristics of these mutants suggest that after receptor activation, Gbetagamma retains contact with a receptor through the gamma subunit C terminal domain and that differential interaction of the activated receptor with this domain controls Gbetagamma translocation from the plasma membrane.


Asunto(s)
Membrana Celular/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Aparato de Golgi/metabolismo , Subunidades de Proteína/metabolismo , Receptor Muscarínico M2/metabolismo , Secuencia de Aminoácidos , Animales , Células CHO , Supervivencia Celular , Células Cultivadas , Cricetinae , Cricetulus , Subunidades gamma de la Proteína de Unión al GTP/química , Datos de Secuencia Molecular , Mutación/genética , Unión Proteica , Prenilación de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Transporte de Proteínas , Receptor Muscarínico M2/genética
12.
Cell Signal ; 18(8): 1190-200, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16242307

RESUMEN

G protein activation by Gi/Go coupling M2 muscarinic receptors, Gq coupling M3 receptors and Gs coupling beta2 adrenergic receptors causes rapid reversible translocation of the G protein gamma11 subunit from the plasma membrane to the Golgi complex. Co-translocation of the beta1 subunit suggests that gamma11 translocates as a betagamma complex. Pertussis toxin ADP ribosylation of the alphai subunit type or substitution of the C terminal domain of alphao with the corresponding region of alphas inhibits gamma11 translocation demonstrating that alpha subunit interaction with a receptor and its activation are requirements for the translocation. The rate of gamma11 translocation is sensitive to the rate of activation of the G protein alpha subunit. alpha subunit types that show high receptor activated rates of guanine nucleotide exchange in vitro support high rates of gamma11 translocation compared to alpha subunit types that have a relatively lower rate of guanine nucleotide exchange. The results suggest that the receptor induced translocation of gamma11 is controlled by the rate of cycling of the G protein through active and inactive forms. They also demonstrate that imaging of gamma11 translocation can be used as a non-invasive tool to measure the relative activities of wild type or mutant receptor and alpha subunit types in a live cell.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gq-G11/metabolismo , Subunidades alfa de la Proteína de Unión al GTP Gs/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Células CHO , Cricetinae , Cricetulus , Aparato de Golgi/metabolismo , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Transporte de Proteínas , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M3/metabolismo , Receptores Adrenérgicos beta 2/metabolismo
13.
Mol Biol Cell ; 27(9): 1442-50, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26941336

RESUMEN

Migratory immune cells use intracellular signaling networks to generate and orient spatially polarized responses to extracellular cues. The monomeric G protein Cdc42 is believed to play an important role in controlling the polarized responses, but it has been difficult to determine directly the consequences of localized Cdc42 activation within an immune cell. Here we used subcellular optogenetics to determine how Cdc42 activation at one side of a cell affects both cell behavior and dynamic molecular responses throughout the cell. We found that localized Cdc42 activation is sufficient to generate polarized signaling and directional cell migration. The optically activated region becomes the leading edge of the cell, with Cdc42 activating Rac and generating membrane protrusions driven by the actin cytoskeleton. Cdc42 also exerts long-range effects that cause myosin accumulation at the opposite side of the cell and actomyosin-mediated retraction of the cell rear. This process requires the RhoA-activated kinase ROCK, suggesting that Cdc42 activation at one side of a cell triggers increased RhoA signaling at the opposite side. Our results demonstrate how dynamic, subcellular perturbation of an individual signaling protein can help to determine its role in controlling polarized cellular responses.


Asunto(s)
Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Movimiento Celular/fisiología , Polaridad Celular/fisiología , Citoesqueleto/metabolismo , Optogenética/métodos , Transducción de Señal/genética , Transducción de Señal/fisiología , Proteínas de Unión al GTP rac/metabolismo , Proteína de Unión al GTP rhoA/metabolismo
14.
Cell Signal ; 23(5): 785-93, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21238584

RESUMEN

Cellular senescence is a process wherein proliferating cells undergo permanent cell cycle arrest while remaining viable. Senescence results in enhanced secretion of proteins that promote cancer and inflammation. We report here that the structure of the Golgi complex which regulates secretion is altered in senescent cells. In cells where senescence is achieved by replicative exhaustion or in cells wherein senescence has been induced with BrdU treatment dependent stress, the Golgi complex is dispersed. The expression of a G protein γ subunit, γ11, capable of translocation from the plasma membrane to the Golgi complex on receptor activation increases with senescence. Knockdown of γ11 or overexpression of a dominant negative γ3 subunit inhibits Golgi dispersal induced by senescence. Overall these results suggest that in cellular senescence an upregulated G protein gamma subunit mediates alterations in the structure of the Golgi.


Asunto(s)
Senescencia Celular , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Aparato de Golgi/ultraestructura , Bromodesoxiuridina/farmacología , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/fisiología , Aparato de Golgi/metabolismo , Células HeLa , Humanos , Interleucina-8/metabolismo , Interferencia de ARN , ARN Interferente Pequeño/metabolismo
15.
PLoS One ; 4(11): e7797, 2009 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-19936219

RESUMEN

We examined the role of G proteins in modulating the response of living cells to receptor activation. The response of an effector, phospholipase C-beta to M3 muscarinic receptor activation was measured using sensors that detect the generation of inositol triphosphate or diacylglycerol. The recently discovered translocation of G betagamma from plasma membrane to endomembranes on receptor activation attenuated this response. A FRET based G protein sensor suggested that in contrast to translocating G betagamma, non-translocating G betagamma subunits do not dissociate from the alpha q subunit on receptor activation leading to prolonged retention of the heterotrimer state and an accentuated response. M3 receptors with tethered alpha q induced differential responses to receptor activation in cells with or without an endogenous translocation capable gamma subunit. G protein heterotrimer dissociation and betagamma translocation are thus unanticipated modulators of the intensity of a cell's response to an extracellular signal.


Asunto(s)
Proteínas de Unión al GTP/química , Regulación de la Expresión Génica , Animales , Células CHO , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Dimerización , Transferencia Resonante de Energía de Fluorescencia , Proteínas de Unión al GTP/metabolismo , Modelos Biológicos , Fosfolipasa C beta/metabolismo , Estructura Terciaria de Proteína , Transporte de Proteínas , Receptor Muscarínico M3/metabolismo
16.
J Biol Chem ; 282(33): 24092-8, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17576765

RESUMEN

Heterotrimeric G proteins (alphabetagamma) mediate the majority of signaling pathways in mammalian cells. It is long held that G protein function is localized to the plasma membrane. Here we examined the spatiotemporal dynamics of G protein localization using fluorescence recovery after photobleaching, fluorescence loss in photobleaching, and a photoswitchable fluorescent protein, Dronpa. Unexpectedly, G protein subunits shuttle rapidly (t1/2 < 1 min) between the plasma membrane and intracellular membranes. We show that consistent with such shuttling, G proteins constitutively reside in endomembranes. Furthermore, we show that shuttling is inhibited by 2-bromopalmitate. Thus, contrary to present thought, G proteins do not reside permanently on the plasma membrane but are constantly testing the cytoplasmic surfaces of the plasma membrane and endomembranes to maintain G protein pools in intracellular membranes to establish direct communication between receptors and endomembranes.


Asunto(s)
Membrana Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Membranas Intracelulares/metabolismo , Animales , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Cinética , Palmitatos/farmacología , Subunidades de Proteína/metabolismo , Transporte de Proteínas
17.
J Biol Chem ; 282(33): 24099-108, 2007 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-17581822

RESUMEN

The present model of G protein activation by G protein-coupled receptors exclusively localizes their activation and function to the plasma membrane (PM). Observation of the spatiotemporal response of G protein subunits in a living cell to receptor activation showed that 6 of the 12 members of the G protein gamma subunit family translocate specifically from the PM to endomembranes. The gamma subunits translocate as betagamma complexes, whereas the alpha subunit is retained on the PM. Depending on the gamma subunit, translocation occurs predominantly to the Golgi complex or the endoplasmic reticulum. The rate of translocation also varies with the gamma subunit type. Different gamma subunits, thus, confer distinct spatiotemporal properties to translocation. A striking relationship exists between the amino acid sequences of various gamma subunits and their translocation properties. gamma subunits with similar translocation properties are more closely related to each other. Consistent with this relationship, introducing residues conserved in translocating subunits into a non-translocating subunit results in a gain of function. Inhibitors of vesicle-mediated trafficking and palmitoylation suggest that translocation is diffusion-mediated and controlled by acylation similar to the shuttling of G protein subunits (Chisari, M., Saini, D. K., Kalyanaraman, V., and Gautam, N. (2007) J. Biol. Chem. 282, 24092-24098). These results suggest that the continual testing of cytosolic surfaces of cell membranes by G protein subunits facilitates an activated cell surface receptor to direct potentially active G protein betagamma subunits to intracellular membranes.


Asunto(s)
Membrana Celular/metabolismo , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Membranas Intracelulares/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animales , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Humanos , Modelos Biológicos , Transporte de Proteínas
18.
J Biol Chem ; 279(49): 51541-4, 2004 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-15448129

RESUMEN

Heterotrimeric G proteins have been thought to function on the plasma membrane after activation by transmembrane receptors. Here we show that, after activation by receptors, the G protein betagamma complex selectively translocates to the Golgi. Receptor inactivation results in Gbetagamma translocating back to the plasma membrane. Both translocation processes occur rapidly within seconds. The efficiency of translocation is influenced by the type of gamma subunit present in the G protein. Distinctly different receptor types are capable of inducing the translocation. Receptor-mediated translocation of Gbetagamma can spatially segregate G protein signaling activity.


Asunto(s)
Membrana Celular/metabolismo , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/química , Aparato de Golgi/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Células CHO , Cricetinae , ADN Complementario/metabolismo , Difusión , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Vectores Genéticos , Proteínas Fluorescentes Verdes/metabolismo , Procesamiento de Imagen Asistido por Computador , Proteínas Luminiscentes/metabolismo , Microscopía Fluorescente , Estructura Terciaria de Proteína , Transporte de Proteínas , Transducción de Señal , Factores de Tiempo
19.
J Biol Chem ; 277(22): 19573-8, 2002 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-11914377

RESUMEN

The G protein betagamma complex regulates a wide range of effectors, including the phospholipase C isozymes (PLCbetas). Different domains on the beta subunit are known to contact phospholipase Cbeta and affect its regulation. In contrast, the role of the gamma subunit in Gbetagamma modulation of PLCbeta function is not known. Results here show that the gamma subunit C-terminal domain is involved in mediating Gbetagamma interactions with phospholipase Cbeta. Mutations were introduced to alter the position of the post-translational prenyl modification at the C terminus of the gamma subunit with reference to the beta subunit. These mutants were appropriately post-translationally modified with the geranylgeranyl moiety. A deletion that shortened the C-terminal domain, insertions that extended this domain, and a point mutation, F59A, that disrupted the interaction of this domain with the beta subunit were all affected in their ability to activate PLCbeta to varying degrees. All mutants, however, interacted equally effectively with the G(o)alpha subunit. The results indicate that the G protein gamma subunit plays a direct role in the modulation of effector function by the betagamma complex.


Asunto(s)
Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Proteínas de Unión al GTP Heterotriméricas/química , Proteínas de Unión al GTP Heterotriméricas/fisiología , Isoenzimas/química , Isoenzimas/fisiología , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/fisiología , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Animales , Cromatografía Líquida de Alta Presión , Dimerización , Relación Dosis-Respuesta a Droga , Eliminación de Gen , Insectos , Espectrometría de Masas , Modelos Moleculares , Datos de Secuencia Molecular , Fosfolipasa C beta , Mutación Puntual , Unión Proteica , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes/metabolismo , Factores de Tiempo , Tripsina/farmacología , Factores de Virulencia de Bordetella/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA