Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 455(7212): 503-5, 2008 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-18818651

RESUMEN

Highly luminous rapid flares are characteristic of processes around compact objects like white dwarfs, neutron stars and black holes. In the high-energy regime of X-rays and gamma-rays, outbursts with variabilities on timescales of seconds or less are routinely observed, for example in gamma-ray bursts or soft gamma-ray repeaters. At optical wavelengths, flaring activity on such timescales has not been observed, other than from the prompt phase of one exceptional gamma-ray burst. This is mostly due to the fact that outbursts with strong, fast flaring are usually discovered in the high-energy regime; most optical follow-up observations of such transients use instruments with integration times exceeding tens of seconds, which are therefore unable to resolve fast variability. Here we show the observation of extremely bright and rapid optical flaring in the Galactic transient SWIFT J195509.6+261406. Our optical light curves are phenomenologically similar to high-energy light curves of soft gamma-ray repeaters and anomalous X-ray pulsars, which are thought to be neutron stars with extremely high magnetic fields (magnetars). This suggests that similar processes are in operation, but with strong emission in the optical, unlike in the case of other known magnetars.

2.
Science ; 244(4903): 441-4, 1989 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-17807609

RESUMEN

Since launch in early 1980 the Gamma-Ray Spectrometer (GRS) onboard the Solar Maximum Mission (SMM) satellite has monitored the sun at gamma-ray energies. In addition to observations of solar flares, cosmic gamma-ray bursts, and precipitating radiation belt electrons, the instrument has detected a new class of high-energy transient events that cannot be attributed to any of these phenomena. The duration of these transients can range from 1 second to more than 10 minutes. The average event rate between 1980 and 1986 was about five per month. However, in February 1987 this rate increased by more than a factor of 25 and continued at this high level until June 1988. These transients can be subdivided into three classes: (i) 0.511-megaelectron volt annihilation line events, (ii) particle events, and (iii) broad-band photon continuum-like events. Evidence is presented that these transients are not of natural origin. It is found that the most likely sources of these events are reactors in earth orbiting satellites. Apart from the threat these reactors pose upon accidental reentry, the reactor-generated transients may have a deleterious effect on cosmic observations obtained with gamma-ray detectors in low earth orbit.

4.
Nature ; 414(6860): 180-2, 2001 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-11700550

RESUMEN

Black holes become visible when they accrete gas, a common source of which is a close stellar companion. The standard theory for this process (invoking a 'thin accretion disk') does not explain some spectacular phenomena associated with these systems, such as their X-ray variability and relativistic outflows, indicating some lack of understanding of the actual physical conditions. Simultaneous observations at multiple wavelengths can provide strong constraints on these conditions. Here we report simultaneous high-time-resolution X-ray and optical observations of the transient source XTE J1118+480, which show a strong but puzzling correlation between the emissions. The optical emission rises suddenly following an increase in the X-ray output, but with a dip 2-5 seconds in advance of the X-rays. This result is not easy to understand within the simplest model of the optical emission, where the light comes from reprocessed X-rays. It is probably more consistent with an earlier suggestion that the optical light is cyclosynchrotron emission that originates in a region about 20,000 km from the black hole. We propose that the time dependence is evidence for a relatively slow (<0.1c), magnetically controlled outflow.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA