RESUMEN
Arenaviruses exist globally and can cause hemorrhagic fever and neurological diseases, exemplified by the zoonotic pathogen lymphocytic choriomeningitis virus (LCMV). The structures of individual LCMV proteins or their fragments have been reported, but the architectural organization and the nucleocapsid assembly mechanism remain elusive. Importantly, the in situ structure of the arenavirus fusion protein complex (glycoprotein complex, GPC) as present on the virion prior to fusion, particularly with its integral stable signal peptide (SSP), has not been shown, hindering efforts such as structure-based vaccine design. Here, we have determined the in situ structure of LCMV proteins and their architectural organization in the virion by cryogenic electron tomography. The tomograms reveal the global distribution of GPC, matrix protein Z, and the contact points between the viral envelope and nucleocapsid. Subtomogram averaging yielded the in situ structure of the mature GPC with its transmembrane domain intact, revealing the GP2-SSP interface and the endodomain of GP2. The number of RNA-dependent RNA polymerase L molecules packaged within each virion varies, adding new perspectives to the infection mechanism. Together, these results delineate the structural organization of LCMV and offer new insights into its mechanism of LCMV maturation, egress, and cell entry. IMPORTANCE: The impact of COVID-19 on public health has highlighted the importance of understanding zoonotic pathogens. Lymphocytic choriomeningitis virus (LCMV) is a rodent-borne human pathogen that causes hemorrhagic fever. Herein, we describe the in situ structure of LCMV proteins and their architectural organization on the viral envelope and around the nucleocapsid. The virion structure reveals the distribution of the surface glycoprotein complex (GPC) and the contact points between the viral envelope and the underlying matrix protein, as well as the association with the nucleocapsid. The morphology and sizes of virions, as well as the number of RNA polymerase L inside each virion vary greatly, highlighting the fast-changing nature of LCMV. A comparison between the in situ GPC trimeric structure and prior ectodomain structures identifies the transmembrane and endo domains of GPC and key interactions among its subunits. The work provides new insights into LCMV assembly and informs future structure-guided vaccine design.
Asunto(s)
Virus de la Coriomeningitis Linfocítica , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/ultraestructura , Animales , Humanos , Virión/metabolismo , Virión/ultraestructura , Microscopía por Crioelectrón , Proteínas Virales de Fusión/metabolismo , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/genética , Nucleocápside/metabolismo , Nucleocápside/ultraestructura , Nucleocápside/química , Tomografía con Microscopio Electrónico , Coriomeningitis Linfocítica/virología , Modelos MolecularesRESUMEN
BACKGROUND: The risks of leaflet thrombosis and the associated cerebral thromboembolism are unknown according to different anticoagulation dosing after transcatheter aortic valve replacement (TAVR). The aim was to evaluate the incidence of leaflet thrombosis and cerebral thromboembolism between low-dose (30 mg) or standard-dose (60 mg) edoxaban and dual antiplatelet therapy (DAPT) after TAVR. METHODS: In this prespecified subgroup analysis of the ADAPT-TAVR trial, the primary endpoint was the incidence of leaflet thrombosis on 4-dimensional computed tomography at 6-months. Key secondary endpoints were new cerebral lesions on brain magnetic resonance imaging and neurological and neurocognitive dysfunction. RESULTS: Of 229 patients enrolled in this study, 118 patients were DAPT group and 111 were edoxaban group (43 [39.1%] 60 mg vs 68 [61.3%] 30 mg). There was a significantly lower incidence of leaflet thrombosis in the standard-dose edoxaban group than in the DAPT group (2.4% vs 18.3%; odds ratio [OR] 0.11; 95% confidence interval [CI], 0.01-0.55; P = .03). However, no significant difference was observed between low-dose edoxaban and DAPT (15.0% vs 18.3%; OR 0.79; 95% CI, 0.32-1.81; P = .58). Irrespective of different antithrombotic regiments, the percentages of patients with new cerebral lesions on brain MRI and worsening neurological or neurocognitive function were not significantly different. CONCLUSIONS: In patients without an indication for anticoagulation after TAVR, the incidence of leaflet thrombosis was significantly lower with standard-dose edoxaban but not with low-dose edoxaban, as compared with DAPT. However, this differential effect of edoxaban on leaflet thrombosis was not associated with a reduction of new cerebral thromboembolism and neurological dysfunction.
Asunto(s)
Estenosis de la Válvula Aórtica , Piridinas , Tiazoles , Tromboembolia , Trombosis , Reemplazo de la Válvula Aórtica Transcatéter , Humanos , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Inhibidores de Agregación Plaquetaria , Válvula Aórtica/cirugía , Resultado del Tratamiento , Tromboembolia/epidemiología , Tromboembolia/etiología , Tromboembolia/prevención & control , Trombosis/epidemiología , Trombosis/etiología , Trombosis/prevención & control , Anticoagulantes/uso terapéutico , Estenosis de la Válvula Aórtica/complicacionesRESUMEN
OBJECTIVE: Segmenting the aorta into zones based on anatomical landmarks is a current trend to better understand interventions for aortic dissection or aneurysm. However, comprehensive reference values for aortic zones are lacking. The aim of this study was to establish reference values for aortic size using a fully automated deep learning based segmentation method. METHODS: This retrospective study included 704 healthy adults (mean age 50.6 ± 7.5 years; 407;57.8%] males) who underwent contrast enhanced chest computed tomography (CT) for health screening. A convolutional neural network (CNN) was trained and applied on 3D CT images for automatic segmentation of the aorta based on the Society for Vascular Surgery and Society of Thoracic Surgeons classification. The CNN generated masks were reviewed and corrected by expert cardiac radiologists. RESULTS: Aortic size was significantly larger in males than in females across all zones (zones 0 - 8, all p < .001). The aortic size in each zone increased with age, by approximately 1 mm per 10 years of age, e.g., 25.4, 26.7, 27.5, 28.8, and 29.8 mm at zone 2 in men in the age ranges of 30 - 39, 40 - 49, 50 - 59, 60 - 69, and ≥ 70 years, respectively (all p < .001). CONCLUSION: The deep learning algorithm provided reliable values for aortic size in each zone, with automatic masks comparable to manually corrected ones. Aortic size was larger in males and increased with age. These findings have clinical implications for the detection of aortic aneurysms and other aortic diseases.
RESUMEN
OBJECTIVE: Residual aortic dissection (AD) following DeBakey type I AD repair is associated with a high rate of adverse events that need additional intervention or surgery. This study aimed to identify clinical and early post-operative computed tomography angiography (CTA) imaging factors associated with adverse events in patients with type I AD after ascending aorta replacement. METHODS: This single centre, retrospective cohort study included consecutive patients with type I AD who underwent ascending aorta replacement from January 2011 to December 2017 and post-operative CTA within three months. The primary outcome was AD related adverse events, defined as AD related death and re-operation due to aortic aneurysm or impending rupture. The location and size of the primary intimal tears, aortic diameter, and false lumen status were evaluated. Regression analyses were performed to identify factors associated with AD related adverse events. A decision tree model was used to classify patients as high or low risk. RESULTS: Of 103 participants (55.43 ± 13.94 years; 49.5% male), 24 (23.3%) experienced AD related adverse events. In multivariable Cox regression analysis, connective tissue disease (hazard ratio [HR] 15.33; p < .001), maximum aortic diameter ≥ 40 mm (HR 4.90; p < .001), and multiple (three or more) intimal tears (HR 7.12; p < .001) were associated with AD related adverse events. The three year cumulative survival free from AD related events was lower in the high risk group with aortic diameter ≥ 40 mm and multiple intimal tears (41.7% vs. 90.9%; p < .001). CONCLUSION: Early post-operative CTA findings indicating a maximum aortic diameter ≥ 40 mm and multiple intimal tears may predict a higher risk of adverse events. These findings suggest the need for careful monitoring and more vigilant management approaches in these cases.
Asunto(s)
Disección Aórtica , Angiografía por Tomografía Computarizada , Humanos , Masculino , Femenino , Disección Aórtica/cirugía , Disección Aórtica/diagnóstico por imagen , Persona de Mediana Edad , Estudios Retrospectivos , Anciano , Factores de Riesgo , Implantación de Prótesis Vascular/efectos adversos , Implantación de Prótesis Vascular/mortalidad , Complicaciones Posoperatorias/etiología , Complicaciones Posoperatorias/epidemiología , Adulto , Resultado del Tratamiento , Medición de Riesgo , Aneurisma de la Aorta/cirugía , Aneurisma de la Aorta/diagnóstico por imagen , Aneurisma de la Aorta/mortalidad , Factores de Tiempo , Reoperación/estadística & datos numéricosRESUMEN
Hypertrophic cardiomyopathy (HCM) is a genetic myocardial disease characterized by abnormal thickening of the myocardium caused by myocardial disarray and interstitial fibrosis. HCM is associated with sudden cardiac-related events, such as ventricular fibrillation, tachycardia, and syncope. Moreover, left ventricular or midcavity obstruction due to the thickened myocardium can result in severe heart failure and mortality in patients with HCM. Surgical myectomy is a standard treatment option for patients with symptomatic obstructive HCM; however, it is a complex procedure that requires careful planning and execution to avoid complications, such as residual flow obstruction, persistent obliteration of the left ventricular cavity in systole, or iatrogenic ventricular septal defects. Therefore, a thorough understanding of the mechanics of HCM and precise evaluation of the location and extent of the hypertrophic myocardium to be removed are crucial for preoperative planning. Multiphase cardiac CT postprocessing is important for preoperative evaluation and planning of surgical myectomy in patients with HCM. In this review, the authors highlight use of multiphase cardiac CT with step-by-step postprocessing methods to simulate successful surgical myectomy. The transaortic surgeon's view on end-diastolic phase images accurately represents the surgical field. Moreover, myocardial segmentation can be used to generate volume-rendered images and three-dimensional printing. CT evaluation can also assist in identifying concurrent abnormalities, such as mitral valve or papillary muscle abnormalities. In addition to CT, other imaging modalities for preoperative evaluation of HCM and postmyectomy evaluation methods are presented. ©RSNA, 2023 Test Your Knowledge questions in the supplemental material and the slide presentation from the RSNA Annual Meeting are available for this article.
Asunto(s)
Procedimientos Quirúrgicos Cardíacos , Cardiomiopatía Hipertrófica , Humanos , Procedimientos Quirúrgicos Cardíacos/métodos , Tabiques Cardíacos/cirugía , Cardiomiopatía Hipertrófica/diagnóstico por imagen , Cardiomiopatía Hipertrófica/cirugía , Cardiomiopatía Hipertrófica/complicaciones , Miocardio , Tórax , Resultado del TratamientoRESUMEN
Overexpression of transglutaminase 2 (TGase 2; TG2) has been implicated in the progression of renal cell carcinoma (RCC) through the inactivation of p53 by forming a protein complex. Because most p53 in RCC has no mutations, apoptosis can be increased by inhibiting the binding between TG2 and p53 to increase the stability of p53. In the present study, a novel TG2 inhibitor was discovered by investigating the structure of 1H-benzo[d]imidazole-4,7-dione as a simpler chemotype based on the amino-1,4-benzoquinone moiety of streptonigrin, a previously reported inhibitor. Through structure-activity relationship (SAR) studies, compound 8j (MD102) was discovered as a potent TG2 inhibitor with an IC50 value of 0.35 µM, p53 stabilization effect and anticancer effects in the ACHN and Caki-1 RCC cell lines with sulforhodamine B (SRB) GI50 values of 2.15 µM and 1.98 µM, respectively. The binding property of compound 8j (MD102) with TG2 was confirmed to be reversible in a competitive enzyme assay, and the binding interaction was expected to be formed at the ß-sandwich domain, a p53 binding site, in the SPR binding assay with mutant proteins. The mode of binding of compound 8j (MD102) to the ß-sandwich domain of TG2 was analyzed by molecular docking using the crystal structure of the active conformation of human TG2. Compound 8j (MD102) induced a decrease in the downstream signaling of p-AKT and p-mTOR through the stabilization of p53 by TG2 inhibition, resulting in tumor cell apoptosis. In a xenograft animal model using ACHN cancer cells, oral administration and intraperitoneal injection of compound 8j (MD102) showed an inhibitory effect on tumor growth, confirming increased levels of p53 and decreased levels of Ki-67 in tumor tissues through immunohistochemical (IHC) tissue staining. These results indicated that the inhibition of TG2 by compound 8j (MD102) could enhance p53 stabilization, thereby ultimately showing anticancer effects in RCC. Compound 8j (MD102), a novel TG2 inhibitor, can be further applied for the development of an anticancer candidate drug targeting RCC.
Asunto(s)
Antineoplásicos , Carcinoma de Células Renales , Neoplasias Renales , Proteína Glutamina Gamma Glutamiltransferasa 2 , Animales , Humanos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Carcinoma de Células Renales/tratamiento farmacológico , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Imidazoles/uso terapéutico , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/patología , Simulación del Acoplamiento Molecular , Proteína Glutamina Gamma Glutamiltransferasa 2/antagonistas & inhibidores , Transglutaminasas/antagonistas & inhibidores , Transglutaminasas/metabolismo , Proteína p53 Supresora de Tumor/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismoRESUMEN
BACKGROUND: The pragmatic role of dynamic contrast-enhanced magnetic resonance lymphangiography (DCMRL) needs to be evaluated and compared across distinct lymphatic disorders. We aimed to evaluate the performance of DCMRL for identifying the underlying causes of lymphatic disorders and to define the potential benefit of DCMRL for planning lymphatic interventions. METHODS: Patients who underwent DCMRL between August 2017 and July 2022 were included in this retrospective analysis. DCMRL was performed with intranodal injection of a gadolinium-based contrast medium through inguinal lymph nodes under local anesthesia. Technical success of DCMRL and feasibility of percutaneous embolization were assessed based on the lymphatic anatomy visualized by DCMRL. Based on the underlying causes, clinical outcomes were evaluated and compared. RESULTS: Seventy consecutive patients were included. The indications were traumatic chylothorax (n = 42), traumatic chylous ascites (n = 11), and nontraumatic lymphatic leak (n = 17). The technical success rate of DCMRL was the highest in association with nontraumatic lymphatic disorders (94.1% [16/17]), followed by traumatic chylothorax (92.9% [39/42]) and traumatic chylous ascites (81.8% [9/11]). Thirty-one (47.7%) patients among 65 patients who underwent technically successful DCMRL had feasible anatomy for intervention. Clinical success was achieved in 90.3% (28/31) of patients with feasible anatomy for radiologic intervention, while 62.5% (10/16) of patients with anatomical challenges showed improvement. Most patients with traumatic chylothorax showed improvement (92.9% [39/42]), whereas only 23.5% (4/17) of patients with nontraumatic lymphatic disorders showed clinical improvement. CONCLUSION: DCMRL can help identify the underlying causes of lymphatic disorders. The performance of DCMRL and clinical outcomes vary based on the underlying cause. The feasibility of lymphatic intervention can be determined using DCMRL, which can help in predicting clinical outcomes.
Asunto(s)
Medios de Contraste , Embolización Terapéutica , Enfermedades Linfáticas , Linfografía , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Adulto , Linfografía/métodos , Anciano , Enfermedades Linfáticas/terapia , Enfermedades Linfáticas/diagnóstico por imagen , Quilotórax/terapia , Quilotórax/diagnóstico por imagen , Gadolinio , Ascitis Quilosa/terapia , Ascitis Quilosa/diagnóstico por imagen , Adulto Joven , Adolescente , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patologíaRESUMEN
BACKGROUND: It is unknown whether the direct oral anticoagulant edoxaban can reduce leaflet thrombosis and the accompanying cerebral thromboembolic risk after transcatheter aortic valve replacement. In addition, the causal relationship of subclinical leaflet thrombosis with cerebral thromboembolism and neurological or neurocognitive dysfunction remains unclear. METHODS: We conducted a multicenter, open-label randomized trial comparing edoxaban with dual antiplatelet therapy (aspirin plus clopidogrel) in patients who had undergone successful transcatheter aortic valve replacement and did not have an indication for anticoagulation. The primary end point was an incidence of leaflet thrombosis on 4-dimensional computed tomography at 6 months. Key secondary end points were the number and volume of new cerebral lesions on brain magnetic resonance imaging and the serial changes of neurological and neurocognitive function between 6 months and immediately after transcatheter aortic valve replacement. RESULTS: A total of 229 patients were included in the final intention-to-treat population. There was a trend toward a lower incidence of leaflet thrombosis in the edoxaban group compared with the dual antiplatelet therapy group (9.8% versus 18.4%; absolute difference, -8.5% [95% CI, -17.8% to 0.8%]; P=0.076). The percentage of patients with new cerebral lesions on brain magnetic resonance imaging (edoxaban versus dual antiplatelet therapy, 25.0% versus 20.2%; difference, 4.8%; 95% CI, -6.4% to 16.0%) and median total new lesion number and volume were not different between the 2 groups. In addition, the percentages of patients with worsening of neurological and neurocognitive function were not different between the groups. The incidence of any or major bleeding events was not different between the 2 groups. We found no significant association between the presence or extent of leaflet thrombosis with new cerebral lesions and a change of neurological or neurocognitive function. CONCLUSIONS: In patients without an indication for long-term anticoagulation after successful transcatheter aortic valve replacement, the incidence of leaflet thrombosis was numerically lower with edoxaban than with dual antiplatelet therapy, but this was not statistically significant. The effects on new cerebral thromboembolism and neurological or neurocognitive function were also not different between the 2 groups. Because the study was underpowered, the results should be considered hypothesis generating, highlighting the need for further research. REGISTRATION: URL: https://www. CLINICALTRIALS: gov. Unique identifier: NCT03284827.
Asunto(s)
Estenosis de la Válvula Aórtica , Tromboembolia , Trombosis , Reemplazo de la Válvula Aórtica Transcatéter , Anticoagulantes/uso terapéutico , Válvula Aórtica/diagnóstico por imagen , Válvula Aórtica/cirugía , Estenosis de la Válvula Aórtica/complicaciones , Estenosis de la Válvula Aórtica/diagnóstico por imagen , Estenosis de la Válvula Aórtica/cirugía , Humanos , Inhibidores de Agregación Plaquetaria/efectos adversos , Piridinas , Factores de Riesgo , Tiazoles , Tromboembolia/diagnóstico por imagen , Tromboembolia/epidemiología , Tromboembolia/etiología , Trombosis/diagnóstico por imagen , Trombosis/tratamiento farmacológico , Trombosis/epidemiología , Reemplazo de la Válvula Aórtica Transcatéter/efectos adversos , Reemplazo de la Válvula Aórtica Transcatéter/métodos , Resultado del TratamientoRESUMEN
OBJECTIVE: Laser interstitial thermal therapy (LiTT) is a minimally invasive surgical procedure for intractable mesial temporal epilepsy (mTLE). LiTT is safe and effective, but seizure outcomes are highly variable due to patient variability, suboptimal targeting, and incomplete ablation of the epileptogenic zone. Apparent diffusion coefficient (ADC) is a magnetic resonance imaging (MRI) sequence that can identify potential epileptogenic foci in the mesial temporal lobe to improve ablation and seizure outcomes. The objective of this study was to investigate whether ablation of tissue clusters with high ADC values in the mesial temporal structures is associated with seizure outcome in mTLE after LiTT. METHODS: Twenty-seven patients with mTLE who underwent LiTT at our institution were analyzed. One-year seizure outcome was categorized as complete seizure freedom (International League Against Epilepsy [ILAE] Class I) and residual seizures (ILAE Class II-VI). Volumes of hippocampus and amygdala were segmented from the preoperative T1 MRI sequence. Spatially distinct hyperintensity clusters were identified in the preoperative ADC map. Proportion of cluster volume and number ablated were associated with seizure outcomes. RESULTS: The mean age at surgery was 37.5 years and the mean follow-up duration was 1.9 years. Proportions of hippocampal cluster volume (p = .013) and number (p = .03) ablated were significantly higher in patients with seizure freedom. For amygdala clusters, the proportion of cluster number ablated was significantly associated with seizure outcome (p = .026). In the combined amygdalohippocampal complex, ablation of amygdalohippocampal clusters reliably predicted seizure outcome by their volume ablated (area under the curve [AUC] = 0.7670, p = .02). SIGNIFICANCE: Seizure outcome after LiTT in patients with mTLE was associated significantly with the extent of cluster ablation in the amygdalohippocampal complex. The results suggest that preoperative ADC analysis may help identify high-yield pathological tissue clusters that represent epileptogenic foci. ADC-based cluster analysis can potentially assist ablation targeting and improve seizure outcome after LiTT in mTLE.
Asunto(s)
Epilepsia Refractaria , Epilepsia Generalizada , Epilepsia del Lóbulo Temporal , Terapia por Láser , Humanos , Epilepsia del Lóbulo Temporal/cirugía , Terapia por Láser/métodos , Convulsiones/patología , Lóbulo Temporal/cirugía , Hipocampo/patología , Epilepsia Refractaria/cirugía , Imagen por Resonancia Magnética/métodos , Epilepsia Generalizada/patología , Rayos Láser , Resultado del TratamientoRESUMEN
OBJECTIVE: Patients who undergo transcatheter aortic valve replacement (TAVR) are at risk for new-onset arrhythmia (NOA) that may require permanent pacemaker (PPM) implantation, resulting in decreased cardiac function. We aimed to investigate the factors that are associated with NOA after TAVR and to compare pre- and post-TAVR cardiac functions between patients with and without NOA using CT-derived strain analyses. METHODS: We included consecutive patients who underwent pre- and post-TAVR cardiac CT scans six months after TAVR. New-onset left bundle branch block, atrioventricular block, and atrial fibrillation/flutter lasting over 30 days after the procedure and/or the need for PPM diagnosed within 1 year after TAVR were regarded as NOA. Implant depth and left heart function and strains were analyzed using multi-phase CT images and compared between patients with and without NOA. RESULTS: Of 211 patients (41.7% men; median 81 years), 52 (24.6%) presented with NOA after TAVR, and 24 (11.4%) implanted PPM. Implant depth was significantly deeper in the NOA group than in the non-NOA group (- 6.7 ± 2.4 vs. - 5.6 ± 2.6 mm; p = 0.009). Left ventricular global longitudinal strain (LV GLS) and left atrial (LA) reservoir strain were significantly improved only in the non-NOA group (LV GLS, - 15.5 ± 4.0 to - 17.3 ± 2.9%; p < 0.001; LA reservoir strain, 22.3 ± 8.9 to 26.5 ± 7.6%; p < 0.001). The mean percent change of the LV GLS and LA reservoir strains was evident in the non-NOA group (p = 0.019 and p = 0.035, respectively). CONCLUSIONS: A quarter of patients presented with NOA after TAVR. Deep implant depth on post-TAVR CT scans was associated with NOA. Patients with NOA after TAVR had impaired LV reserve remodeling assessed by CT-derived strains. CLINICAL RELEVANCE STATEMENT: New-onset arrhythmia (NOA) following transcatheter aortic valve replacement (TAVR) impairs cardiac reverse remodeling. CT-derived strain analysis reveals that patients with NOA do not show improvement in left heart function and strains, highlighting the importance of managing NOA for optimal outcomes. KEY POINTS: ⢠New-onset arrhythmia following transcatheter aortic valve replacement (TAVR) is a concern that interferes with cardiac reverse remodeling. ⢠Comparison of pre-and post-TAVR CT-derived left heart strain provides insight into the impaired cardiac reverse remodeling in patients with new-onset arrhythmia following TAVR. ⢠The expected reverse remodeling was not observed in patients with new-onset arrhythmia following TAVR, given that CT-derived left heart function and strains did not improve.
Asunto(s)
Estenosis de la Válvula Aórtica , Fibrilación Atrial , Reemplazo de la Válvula Aórtica Transcatéter , Masculino , Humanos , Femenino , Estenosis de la Válvula Aórtica/cirugía , Resultado del Tratamiento , Válvula Aórtica/cirugía , Tomografía Computarizada por Rayos X , Factores de Riesgo , Remodelación Ventricular , Función Ventricular IzquierdaRESUMEN
Successful outcomes in epilepsy surgery rely on the accurate localization of the seizure onset zone. Localizing the seizure onset zone is often a costly and time-consuming process wherein a patient undergoes intracranial EEG monitoring, and a team of clinicians wait for seizures to occur. Clinicians then analyse the intracranial EEG before each seizure onset to identify the seizure onset zone and localization accuracy increases when more seizures are captured. In this study, we develop a new approach to guide clinicians to actively elicit seizures with electrical stimulation. We propose that a brain region belongs to the seizure onset zone if a periodic stimulation at a particular frequency produces large amplitude oscillations in the intracranial EEG network that propagate seizure activity. Such responses occur when there is 'resonance' in the intracranial EEG network, and the resonant frequency can be detected by observing a sharp peak in the magnitude versus frequency response curve, called a Bode plot. To test our hypothesis, we analysed single-pulse electrical stimulation response data in 32 epilepsy patients undergoing intracranial EEG monitoring. For each patient and each stimulated brain region, we constructed a Bode plot by estimating a transfer function model from the intracranial EEG 'impulse' or single-pulse electrical stimulation response. The Bode plots were then analysed for evidence of resonance. First, we showed that when Bode plot features were used as a marker of the seizure onset zone, it distinguished successful from failed surgical outcomes with an area under the curve of 0.83, an accuracy that surpassed current methods of analysis with cortico-cortical evoked potential amplitude and cortico-cortical spectral responses. Then, we retrospectively showed that three out of five native seizures accidentally triggered in four patients during routine periodic stimulation at a given frequency corresponded to a resonant peak in the Bode plot. Last, we prospectively stimulated peak resonant frequencies gleaned from the Bode plots to elicit seizures in six patients, and this resulted in an induction of three seizures and three auras in these patients. These findings suggest neural resonance as a new biomarker of the seizure onset zone that can guide clinicians in eliciting native seizures to more quickly and accurately localize the seizure onset zone.
Asunto(s)
Epilepsia Refractaria , Epilepsia , Humanos , Estudios Retrospectivos , Convulsiones/cirugía , Electrocorticografía/métodos , Encéfalo , Electroencefalografía/métodosRESUMEN
Over 15 million epilepsy patients worldwide have drug-resistant epilepsy. Successful surgery is a standard of care treatment but can only be achieved through complete resection or disconnection of the epileptogenic zone, the brain region(s) where seizures originate. Surgical success rates vary between 20% and 80%, because no clinically validated biological markers of the epileptogenic zone exist. Localizing the epileptogenic zone is a costly and time-consuming process, which often requires days to weeks of intracranial EEG (iEEG) monitoring. Clinicians visually inspect iEEG data to identify abnormal activity on individual channels occurring immediately before seizures or spikes that occur interictally (i.e. between seizures). In the end, the clinical standard mainly relies on a small proportion of the iEEG data captured to assist in epileptogenic zone localization (minutes of seizure data versus days of recordings), missing opportunities to leverage these largely ignored interictal data to better diagnose and treat patients. IEEG offers a unique opportunity to observe epileptic cortical network dynamics but waiting for seizures increases patient risks associated with invasive monitoring. In this study, we aimed to leverage interictal iEEG data by developing a new network-based interictal iEEG marker of the epileptogenic zone. We hypothesized that when a patient is not clinically seizing, it is because the epileptogenic zone is inhibited by other regions. We developed an algorithm that identifies two groups of nodes from the interictal iEEG network: those that are continuously inhibiting a set of neighbouring nodes ('sources') and the inhibited nodes themselves ('sinks'). Specifically, patient-specific dynamical network models were estimated from minutes of iEEG and their connectivity properties revealed top sources and sinks in the network, with each node being quantified by source-sink metrics. We validated the algorithm in a retrospective analysis of 65 patients. The source-sink metrics identified epileptogenic regions with 73% accuracy and clinicians agreed with the algorithm in 93% of seizure-free patients. The algorithm was further validated by using the metrics of the annotated epileptogenic zone to predict surgical outcomes. The source-sink metrics predicted outcomes with an accuracy of 79% compared to an accuracy of 43% for clinicians' predictions (surgical success rate of this dataset). In failed outcomes, we identified brain regions with high metrics that were untreated. When compared with high frequency oscillations, the most commonly proposed interictal iEEG feature for epileptogenic zone localization, source-sink metrics outperformed in predictive power (by a factor of 1.2), suggesting they may be an interictal iEEG fingerprint of the epileptogenic zone.
Asunto(s)
Epilepsia , Convulsiones , Humanos , Estudios Retrospectivos , Electrocorticografía/métodos , Epilepsia/diagnóstico , Epilepsia/cirugía , BiomarcadoresRESUMEN
Cell size is believed to influence cell growth and metabolism. Consistently, several studies have revealed that large cells have lower mass accumulation rates per unit mass (i.e., growth efficiency) than intermediate-sized cells in the same population. Size-dependent growth is commonly attributed to transport limitations, such as increased diffusion timescales and decreased surface-to-volume ratio. However, separating cell size- and cell cycle-dependent growth is challenging. To address this, we monitored growth efficiency of pseudodiploid mouse lymphocytic leukemia cells during normal proliferation and polyploidization. This was enabled by the development of large-channel suspended microchannel resonators that allow us to monitor buoyant mass of single cells ranging from 40 pg (small pseudodiploid cell) to over 4,000 pg, with a resolution ranging from â¼1% to â¼0.05%. We find that cell growth efficiency increases, plateaus, and then decreases as cell cycle proceeds. This growth behavior repeats with every endomitotic cycle as cells grow into polyploidy. Overall, growth efficiency changes 33% throughout the cell cycle. In contrast, increasing cell mass by over 100-fold during polyploidization did not change growth efficiency, indicating exponential growth. Consistently, growth efficiency remained constant when cell cycle was arrested in G2 Thus, cell cycle is a primary determinant of growth efficiency. As growth remains exponential over large size scales, our work finds no evidence for transport limitations that would decrease growth efficiency.
Asunto(s)
Técnicas Biosensibles , Aumento de la Célula , Proliferación Celular/genética , Leucemia Linfoide/genética , Animales , Ciclo Celular/genética , División Celular/genética , Línea Celular Tumoral , Humanos , Leucemia Linfoide/patología , Ratones , Técnicas Analíticas Microfluídicas , PoliploidíaRESUMEN
In previous work, we showed that cancer cells do not depend on glycolysis for ATP production, but they do on fatty acid oxidation. However, we found some cancer cells induced cell death after glucose deprivation along with a decrease of ATP production. We investigated the different response of glucose deprivation with two types of cancer cells including glucose insensitive cancer cells (GIC) which do not change ATP levels, and glucose sensitive cancer cells (GSC) which decrease ATP production in 24 h. Glucose deprivation-induced cell death in GSC by more than twofold after 12 h and by up to tenfold after 24 h accompanied by decreased ATP production to compare to the control (cultured in glucose). Glucose deprivation decreased the levels of metabolic intermediates of the pentose phosphate pathway (PPP) and the reduced form of nicotinamide adenine dinucleotide phosphate (NADPH) in both GSC and GIC. However, glucose deprivation increased reactive oxygen species (ROS) only in GSC, suggesting that GIC have a higher tolerance for decreased NADPH than GSC. The twofold higher ratio of reduced/oxidized glutathione (GSH/GSSG) in GIS than in GSC correlates closely with the twofold lower ROS levels under glucose starvation conditions. Treatment with N-acetylcysteine (NAC) as a precursor to the biologic antioxidant glutathione restored ATP production by 70% and reversed cell death caused by glucose deprivation in GSC. The present findings suggest that glucose deprivation-induced cancer cell death is not caused by decreased ATP levels, but rather triggered by a failure of ROS regulation by the antioxidant system. Conclusion is clear that glucose deprivation-induced cell death is independent from ATP depletion-induced cell death.
Asunto(s)
Adenosina Trifosfato , Glucosa , Neoplasias , Especies Reactivas de Oxígeno , Glucosa/deficiencia , Adenosina Trifosfato/metabolismo , Vía de Pentosa Fosfato , Especies Reactivas de Oxígeno/metabolismo , NADP/metabolismo , Glutatión/metabolismo , Acetilcisteína/metabolismo , Acetilcisteína/farmacología , Células PC-3 , Humanos , Neoplasias/metabolismo , Neoplasias/patología , Muerte CelularRESUMEN
Annually, millions of new cancer cases are reported, leading to millions of deaths worldwide. Among the newly reported cases, breast and colon cancers prevail as the most frequently detected variations. To effectively counteract this rapid increase, the development of innovative therapies is crucial. Small molecules possessing pyridine and urea moieties have been reported in many of the currently available anticancer agents, especially VEGFR2 inhibitors. With this in mind, a rational design approach was employed to create hybrid small molecules combining urea and pyridine. These synthesized compounds underwent in vitro testing against breast and colon cancer cell lines, revealing potent submicromolar anticancer activity. Compound 8a, specifically, exhibited an impressive GI50 value of 0.06 µM against the MCF7 cancer cell line, while compound 8h displayed the highest cytotoxic activity against the HCT116 cell line, with a GI50 of 0.33 ± 0.042 µM. Notably, compounds 8a, 8h, and 8i demonstrated excellent safety profiles when tested on normal cells. Molecular docking, dynamic studies, and free energy calculations were employed to validate the affinity of these compounds as VEGFR2 inhibitors.
Asunto(s)
Antineoplásicos , Neoplasias del Colon , Humanos , Urea/farmacología , Relación Estructura-Actividad , Línea Celular Tumoral , Simulación del Acoplamiento Molecular , Antineoplásicos/farmacología , Piridinas/farmacología , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Estructura MolecularRESUMEN
The version of this paper originally published online contained an error in the x-axis of Fig. 2c: the LatB concentrations should be 0.4 and 1 µM, but during typesetting, the 1 µM label was incorrectly changed to 0.1 µM. The label is now correct in the print, PDF, and HTML versions of the paper. In addition, in the article's online Supplementary Information, Supplementary Video 2 was a duplicate of Supplementary Video 1. The correct versions of both videos are now available online.
RESUMEN
The monitoring of mechanics in a single cell throughout the cell cycle has been hampered by the invasiveness of mechanical measurements. Here we quantify mechanical properties via acoustic scattering of waves from a cell inside a fluid-filled vibrating cantilever with a temporal resolution of < 1 min. Through simulations, experiments with hydrogels and the use of chemically perturbed cells, we show that our readout, the size-normalized acoustic scattering (SNACS), measures stiffness. To demonstrate the noninvasiveness of SNACS over successive cell cycles, we used measurements that resulted in deformations of < 15 nm. The cells maintained constant SNACS throughout interphase but showed dynamic changes during mitosis. Our work provides a basis for understanding how growing cells maintain mechanical integrity, and demonstrates that acoustic scattering can be used to noninvasively probe subtle and transient dynamics.
Asunto(s)
Acústica , Análisis de la Célula Individual/métodos , Animales , Fenómenos Biomecánicos , Ciclo Celular , Dactinomicina/metabolismo , Ratones , MicrofluídicaRESUMEN
Sudden unexpected death in epilepsy (SUDEP) is a tragic and unexpected cause of death in patients with a known diagnosis of epilepsy. It occurs in up to 6.3 to 9.3/1,000 patients with drug-resistant epilepsy. The main three risk factors associated with SUDEP are the presence of generalized tonic-clonic seizures, the presence of a seizure in the past year, and an intellectual disability. There are several mechanisms that can result in SUDEP. The most likely sequence of events appears to be a convulsive seizure, overactivation of the autonomic nervous system, cardiorespiratory dysfunction, and death. While the risk of SUDEP is relatively high in patients with drug-resistant epilepsy, studies indicate that more than 50% of patients and caregivers are unaware of the diagnosis. Counseling about the diagnosis and preventative measures at the time of diagnosis is important. There are numerous interventions that may reduce the risk of SUDEP, including conservative measures such as nocturnal surveillance with a bed partner (where applicable) and automated devices. Optimizing seizure control with antiseizure medications and surgical interventions can result in a reduced risk of SUDEP.
Asunto(s)
Epilepsia Refractaria , Epilepsia , Muerte Súbita e Inesperada en la Epilepsia , Humanos , Muerte Súbita e Inesperada en la Epilepsia/etiología , Muerte Súbita e Inesperada en la Epilepsia/prevención & control , Muerte Súbita/epidemiología , Muerte Súbita/etiología , Muerte Súbita/prevención & control , Epilepsia/epidemiología , Convulsiones/tratamiento farmacológico , Factores de RiesgoRESUMEN
BACKGROUND: Behcet's disease (BD) can entail vascular involvement in various forms including aneurysm. We evaluated the angiographic patterns and changes in arterial lesions over time in BD patients with arterial involvement. METHODS: We reviewed the medical records of BD patients diagnosed with arterial lesions between 1995 and 2018. Angiographic patterns were categorized as stenosis, occlusion, dilatation, or aneurysm. Patients were divided according to symptom duration (<5, 5-10, >10 years). Cox proportional-hazards model was used to evaluate the risk factors for vascular progression. RESULTS: 47 BD patients had arterial involvement in the following patterns: aneurysm (n = 31), stenosis (n = 17), dilatation (n = 13), and occlusion (n = 8). Aneurysm (70.8%) was the most common pattern in 24 patients with short (<5 years) symptom duration. Stenosis was more common (50.0%) in 12 patients with longer symptom durations (>10 years). In 23 patients with follow-up imaging (median, 5.7 years), eight (34.8%) developed 11 new lesions: stenosis (n = 5), dilatation (n = 1), and aneurysm (n = 5). One stenotic lesion progressed to occlusion, and two dilated lesions progressed to aneurysms. Lower extremity involvement and methotrexate use were associated with arterial progression, with hazard ratios of 5.716 (p = 0.029) and 0.101 (p = 0.049), respectively. CONCLUSION: In BD patients with arterial involvement, aneurysm was the most common pattern in earlier stages of BD, while stenosis was more common in later stages of BD. Methotrexate use was associated with lower risk of arterial lesion progression.
Asunto(s)
Aneurisma , Síndrome de Behçet , Humanos , Aneurisma/etiología , Angiografía , Síndrome de Behçet/complicaciones , Síndrome de Behçet/diagnóstico , Constricción Patológica , MetotrexatoRESUMEN
PURPOSE: The aim of this study was to compare clinical and second-look arthroscopic outcomes between bone marrow aspirate concentrate (BMAC) augmentation and human umbilical cord blood-derived mesenchymal stromal cell (hUCB-MSC) implantation in high tibial osteotomy (HTO) for medial compartmental knee osteoarthritis and identify the relationship between articular cartilage regeneration and HTO outcomes. METHODS: A total of 176 patients who underwent HTO combined with a BMAC or hUCB-MSC procedure for medial compartment osteoarthritis (Kellgren-Lawrence grade 3) between June 2014 and September 2018 with a minimum follow-up of 2 years were reviewed. After HTO, multiple holes were drilled at cartilage defect sites of the medial femoral condyle (MFC), and then prepared BMAC or hUCB-MSCs in combination with scaffolds were implanted in the MFC lesions. After propensity score matching based on sex, age, body mass index, and lesion size, 55 patients in each of the BMAC and hUCB-MSC groups were successfully matched. Second-look arthroscopic findings were assessed according to the International Cartilage Repair Society (ICRS) Cartilage Repair Assessment (CRA) grading system and Koshino staging system. Clinical outcomes were evaluated using the International Knee Documentation Committee (IKDC), Knee Injury and Osteoarthritis Outcome Score (KOOS), Short-Form 36 (SF-36), and Tegner activity scores. RESULTS: At a mean follow-up of 33 months, clinical outcomes including IKDC, KOOS, SF-36, and Tegner activity scores were significantly improved in both groups (p < 0.001); however, there were no differences between the two groups. Second-look arthroscopy showed better healing of regenerated cartilage in the hUCB-MSC group (Grade I [4 cases, 9.1%]; Grade II [30 cases, 68.2%]; Grade III [11 cases, 22.7%]) than in the BMAC group (Grade I [1 case, 2.7%]; Grade II [20 cases, 54.1%]; Grade III [11 cases, 29.7%]; Grade IV [5 cases, 13.5%]) according to the ICRS CRA grading system (p = 0.040). There was no significant intergroup difference in terms of defect coverage based on the Koshino staging system (p = 0.057). Moreover, ICRS CRA grades at second-look arthroscopy were significantly correlated with clinical outcomes (r = - 0.337; p = 0.002). CONCLUSION: There were no significant differences in the clinical outcomes between the two groups. Both treatments provided similar, reliable outcomes in terms of pain relief, functional scores, and quality of life at a mean follow-up of 33 months. However, hUCB-MSC implantation was more effective than BMAC augmentation for articular cartilage regeneration.