RESUMEN
Theaflavins, a major kind of component in black tea, have been reported to show a variety of biological activities and health effects. However, the unstable chemical properties, low bioavailability and unclear metabolism pathways of theaflavins have left much to be desired in terms of its specific efficacy and applications. This paper provides a comprehensive knowledge on the digestion, absorption, metabolism, distribution and excretion of theaflavins. We find that pH-dependent stability, efflux transport proteins are closely related to the low absorption rate and low bioavailability of theaflavins. When pass through the gastrointestinal tract, TFDG, TF2A and TF2B are gradually degraded to TF1, and release gallic acid. Then, the theaflavins skeleton are degraded into small molecular phenolic substances under the action of enzymes and microorganisms. In addition, theaflavins are widely distributed in the human body including brain, lung, heart, kidney, liver, blood tissue in a low content and can be excreted through feces. However, the influence of digestive enzymes barrier and gut microbial barrier on theaflavins are still unclear. Importantly, most findings are reported by in vitro methods and animal experiments, the metabolites and metabolic pathways of theaflavins in human body are not fully understood and need to be further investigated. We hope to lay a theoretical basis for exploring methods to improve the bioavailability of theaflavins and expanding the application of theaflavins in health foods as well as pharmaceuticals.