Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nano Converg ; 10(1): 5, 2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36645561

RESUMEN

Metabolism, is a complex process involving the gut and the liver tissue, is difficult to be reproduced in vitro with conventional single cell culture systems. To tackle this challenge, we developed a gut-liver-axis chip consisting of the gut epithelial cell chamber and three-dimensional (3D) uniform-sized liver spheroid chamber. Two cell culture chamber compartments were separated with a porous membrane to prevent microorganisms from passing through the chamber. When the hepG2 spheroids cultured with microbiota-derived metabolites, we observed the changes in the physiological function of hepG2 spheroids, showing that the albumin and urea secretion activity of liver spheroids was significantly enhanced. Additionally, the functional validation of hepG2 spheroids treated with microbiota-derived exosome was evaluated that the treatment of the microbiota-derived exosome significantly enhanced albumin and urea in hepG2 spheroids in a gut-liver axis chip. Therefore, this gut-liver axis chip could be a potentially powerful co-culture platform to study the interaction of microbiota and host cells.

2.
Polymers (Basel) ; 14(18)2022 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-36145898

RESUMEN

A three-dimensional (3D) tumor spheroid model plays a critical role in mimicking tumor microenvironments in vivo. However, the conventional culture methods lack the ability to manipulate the 3D tumor spheroids in a homogeneous manner. To address this limitation, we developed a microfluidic-based droplet system for drug screening applications. We used a tree-shaped gradient generator to control the cell density and encapsulate the cells within uniform-sized droplets to generate a 3D gradient-sized tumor spheroid. Using this microfluidic-based droplet system, we demonstrated the high-throughput generation of uniform 3D tumor spheroids containing various cellular ratios for the analysis of the anti-cancer drug cytotoxicity. Consequently, this microfluidic-based gradient droplet generator could be a potentially powerful tool for anti-cancer drug screening applications.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA