Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(14)2023 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-37513186

RESUMEN

Despite public health risk mitigation measures and regulation efforts by many countries, regions, and sectors, viral outbreaks remind the world of our vulnerability to biological hazards and the importance of mitigation actions. The saltwater-tolerant plants in the Salicornia genus belonging to the Amaranthaceae family are widely recognized and researched as producers of clinically applicable phytochemicals. The plants in the Salicornia genus contain flavonoids, flavonoid glycosides, and hydroxycinnamic acids, including caffeic acid, ferulic acid, chlorogenic acid, apigenin, kaempferol, quercetin, isorhamnetin, myricetin, isoquercitrin, and myricitrin, which have all been shown to support the antiviral, virucidal, and symptom-suppressing activities. Their potential pharmacological usefulness as therapeutic medicine against viral infections has been suggested in many studies, where recent studies suggest these phenolic compounds may have pharmacological potential as therapeutic medicine against viral infections. This study reviews the antiviral effects, the mechanisms of action, and the potential as antiviral agents of the aforementioned phenolic compounds found in Salicornia spp. against an influenza A strain (H1N1), hepatitis B and C (HBV/HCV), and human immunodeficiency virus 1 (HIV-1), as no other literature has described these effects from the Salicornia genus at the time of publication. This review has the potential to have a significant societal impact by proposing the development of new antiviral nutraceuticals and pharmaceuticals derived from phenolic-rich formulations found in the edible Salicornia spp. These formulations could be utilized as a novel strategy by which to combat viral pandemics caused by H1N1, HBV, HCV, and HIV-1. The findings of this review indicate that isoquercitrin, myricetin, and myricitrin from Salicornia spp. have the potential to exhibit high efficiency in inhibiting viral infections. Myricetin exhibits inhibition of H1N1 plaque formation and reverse transcriptase, as well as integrase integration and cleavage. Isoquercitrin shows excellent neuraminidase inhibition. Myricitrin inhibits HIV-1 in infected cells. Extracts of biomass in the Salicornia genus could contribute to the development of more effective and efficient measures against viral infections and, ultimately, improve public health.


Asunto(s)
Infecciones por VIH , VIH-1 , Hepatitis C , Subtipo H1N1 del Virus de la Influenza A , Virosis , Humanos , Virus de la Hepatitis B , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/química , Virosis/tratamiento farmacológico , Fenoles/farmacología , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/epidemiología , Hepatitis C/tratamiento farmacológico
2.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-33066643

RESUMEN

Through stepwise recreation of the biosynthetic gene cluster containing PKS3 from Fusarium solani, it was possible to produce the core scaffold compound of bostrycoidin, a red aza-anthraquinone pigment in Saccharomyces cerevisiae. This was achieved through sequential transformation associated recombination (TAR) cloning of FvPPT, fsr1, fsr2, and fsr3 into the pESC-vector system, utilizing the inducible bidirectional galactose promoter for heterologous expression in S. cerevisiae. The production of the core metabolite bostrycoidin was investigated through triplicate growth cultures for 1-4 days, where the maximum titer of bostrycoidin was achieved after 2 days of induction, yielding 2.2 mg/L.


Asunto(s)
Clonación Molecular , Proteínas Fúngicas/genética , Fusarium/genética , Naftoquinonas/metabolismo , Sintasas Poliquetidas/genética , Proteínas Fúngicas/metabolismo , Isoquinolinas/metabolismo , Familia de Multigenes , Sintasas Poliquetidas/metabolismo , Regiones Promotoras Genéticas , Saccharomyces cerevisiae/genética
3.
Methods Mol Biol ; 2489: 93-114, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35524047

RESUMEN

Members of the Fusarium solani species complex are filamentous fungi that can act as pathogens to many crops and animals. Although relevant, a robust molecular toolbox is missing for the investigation of gene function and metabolism. In this chapter, we describe how Agrobacterium-mediated transformation can be used to facilitate gene targeting. A flexible vector system, based on in vivo recombination in Saccharomyces cerevisiae, is utilized to achieve overexpression and gene deletion of targeted biosynthetic genes in F. solani f. sp. pisi.


Asunto(s)
Agrobacterium tumefaciens , Fusarium , Agrobacterium tumefaciens/genética , Fusarium/genética , Fusarium/metabolismo , Ingeniería Genética , Saccharomyces cerevisiae/genética , Transformación Genética
4.
Artículo en Inglés | MEDLINE | ID: mdl-31890232

RESUMEN

BACKGROUND: Besides their ability to produce several interesting bioactive secondary metabolites, members of the Fusarium solani species complex comprise important pathogens of plants and humans. One of the major obstacles in understanding the biology of this species complex is the lack of efficient molecular tools for genetic manipulation. RESULTS: To remove this obstacle we here report the development of a reliable system where the vectors are generated through yeast recombinational cloning and inserted into a specific site in F. solani through Agrobacterium tumefaciens-mediated transformation. As proof-of-concept, the enhanced yellow fluorescent protein (eYFP) was inserted in a non-coding genomic position of F. solani and subsequent analyses showed that the resulting transformants were fluorescent on all tested media. In addition, we cloned and overexpressed the Zn(II)2Cys6 transcriptional factor fsr6 controlling mycelial pigmentation. A transformant displayed deep red/purple pigmentation stemming from bostrycoidin and javanicin. CONCLUSION: By creating streamlined plasmid construction and fungal transformation systems, we are now able to express genes in the crop pathogen F. solani in a reliable and fast manner. As a case study, we targeted and activated the fusarubin (PKS3: fsr) gene cluster, which is the first case study of secondary metabolites being directly associated with the responsible gene cluster in F. solani via targeted activation. The system provides an approach that in the future can be used by the community to understand the biochemistry and genetics of the Fusarium solani species complex, and is obtainable from Addgene catalog #133094.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA