Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
IUBMB Life ; 76(7): 368-382, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38168122

RESUMEN

Oral squamous cell carcinoma (OSCC) is a head and neck cancer (HNC) with a high mortality rate. OSCC is developed in the oral cavity and it is triggered by many etiologic factors and can metastasize both regionally and distantly. Recent research advances in OSCC improved our understanding on the molecular mechanisms involved in and the initiation of OSCC metastasis. The key roles of the extracellular matrix (ECM) in OSCC are an emerging area of intensive research as the ECM macromolecular network is actively involved in events that regulate cellular morphological and functional properties, transcription and cell signaling mechanisms in invasion and metastasis. The provisional matrix that is formed by cancer cells is profoundly different in composition and functions as compared with the matrix of normal tissue. Fibroblasts are mainly responsible for matrix production and remodeling, but in cancer, the tumor matrix in the tumor microenvironment (TME) also originates from cancer cells. Even though extensive research has been conducted on the role of ECM in regulating cancer pathogenesis, its role in modulating OSCC is less elucidated since there are several issues yet to be fully understood. This critical review is focused on recent research as to present and discuss on the involvement of ECM macromolecular effectors (i.e., proteoglycans, integrins, matrix metalloproteinases) in OSCC development and progression.


Asunto(s)
Carcinoma de Células Escamosas , Matriz Extracelular , Neoplasias de la Boca , Microambiente Tumoral , Humanos , Neoplasias de la Boca/patología , Neoplasias de la Boca/metabolismo , Neoplasias de la Boca/genética , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Integrinas/metabolismo , Integrinas/genética , Metaloproteinasas de la Matriz/metabolismo , Metaloproteinasas de la Matriz/genética , Transducción de Señal
2.
Mol Biol Rep ; 51(1): 597, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38683372

RESUMEN

The incidence of head and neck cancer (HNC), constituting approximately one in ten cancer cases worldwide, affects approximately 644,000 individuals annually. Managing this complex disease involves various treatment modalities such as systemic therapy, radiation, and surgery, particularly for patients with locally advanced disease. HNC treatment necessitates a multidisciplinary approach due to alterations in patients' genomes affecting their functionality. Predominantly, squamous cell carcinomas (SCCs), the majority of HNCs, arise from the upper aerodigestive tract epithelium. The epidemiology, staging, diagnosis, and management techniques of head and neck squamous cell carcinoma (HNSCC), encompassing clinical, image-based, histopathological and molecular profiling, have been extensively reviewed. Lymph node metastasis (LNM) is a well-known predictive factor for HNSCC that initiates metastasis and significantly impacts HNSCC prognosis. Distant metastasis (DM) in HNSCC has been correlated to aberrant expression of cancer cell-derived cytokines and growth factors triggering abnormal activation of several signaling pathways that boost cancer cell aggressiveness. Recent advances in genetic profiling, understanding tumor microenvironment, oligometastatic disease, and immunotherapy have revolutionized treatment strategies and disease control. Future research may leverage genomics and proteomics to identify biomarkers aiding individualized HNSCC treatment. Understanding the molecular basis, genetic landscape, atypical signaling pathways, and tumor microenvironment have enhanced the comprehension of HNSCC molecular etiology. This critical review sheds light on regional and distant metastases in HNSCC, presenting major clinical and laboratory features, predictive biomarkers, and available therapeutic approaches.


Asunto(s)
Neoplasias de Cabeza y Cuello , Carcinoma de Células Escamosas de Cabeza y Cuello , Humanos , Neoplasias de Cabeza y Cuello/genética , Neoplasias de Cabeza y Cuello/patología , Neoplasias de Cabeza y Cuello/terapia , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología , Carcinoma de Células Escamosas de Cabeza y Cuello/terapia , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/genética , Microambiente Tumoral/genética , Metástasis Linfática/genética , Metástasis Linfática/patología , Pronóstico , Metástasis de la Neoplasia , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología , Carcinoma de Células Escamosas/terapia
3.
Trends Biochem Sci ; 44(12): 1076-1088, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31288968

RESUMEN

Expression of miRNAs is critical for the regulation of several cell functions including proliferation, migration, differentiation, and survival, as well as extracellular matrix (ECM) remodeling. The dynamic interplay between miRNAs, ECM macromolecules, and the tumor microenvironment plays critical roles in many aspects of human diseases such as metabolic disorders and cancers. Circulating and secreted miRNAs, via membrane vesicles, affect cell-cell communication and cellular metabolic pathways, underscoring their significance in tumor progression. The primary goal of this article is to highlight the importance of epigenetic regulatory factors, focusing on miRNA-mediated ECM reorganization and their functional relationships, and how matrix-mediated miRNAs affect tumor progression.


Asunto(s)
MicroARN Circulante/metabolismo , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , ARN Neoplásico/metabolismo , Microambiente Tumoral , Animales , Matriz Extracelular/patología , Humanos , Neoplasias/patología
4.
Am J Physiol Cell Physiol ; 325(6): C1516-C1531, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37927238

RESUMEN

Head and neck cancer (HNC) encompasses a number of malignancies originating in the head and neck area. In patients with HNC, cervical lymph nodes constitute metastatic sites for cancer cells that escape primary tumors. The premetastatic niche (PMN) is a crucial concept in understanding metastatic disease. PMN refers to the microenvironment resulting mainly from primary tumor cells to foster metastatic tumor cell growth at a distant organ. Tumor microenvironment (TME) plays an important part in the pathogenesis of PMN. A significant prognostic factor is the close association between metastases of lymph nodes and organ dissemination in many different malignancies. The nodal premetastatic niche (NPMN) is a particular type of PMN located within the lymph nodes. NPMN formation is specifically important in HNC as regional lymph node metastasis commonly occurs. The formation happens when tumor cells create a supportive microenvironment within lymph nodes, facilitating their survival, growth, spread, and invasion. This complex mechanism involves multiple steps and cellular interactions between the primary tumor and tumor microenvironment. Several extracellular matrix (ECM) macromolecules, cytokines, and growth factors are implicated in this process. The aim of this article is to present the most recent data on the regulation of the lymph node PMN at molecular and cellular levels in HNC, as well as insights with respect to the relationship between primary tumor cells and the microenvironment of lymph nodes, and the formation of NPMN. We also critically discuss on potential targets for preventing or disrupting nodal metastases and identify potential biomarkers for predicting HNC outcomes.


Asunto(s)
Neoplasias de Cabeza y Cuello , Vasos Linfáticos , Humanos , Metástasis Linfática/patología , Neoplasias de Cabeza y Cuello/patología , Ganglios Linfáticos/patología , Microambiente Tumoral/fisiología
5.
Mol Biol Rep ; 50(1): 853-863, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36342580

RESUMEN

Extracellular matrixes (ECMs) are intricate 3-dimensional macromolecular networks of unique architectures with regulatory roles in cell morphology and functionality. As a dynamic native biomaterial, ECM undergoes constant but tightly controlled remodeling that is crucial for the maintenance of normal cellular behavior. Under pathological conditions like cancer, ECM remodeling ceases to be subjected to control resulting in disease initiation and progression. ECM is comprised of a staggering number of molecules that interact not only with one another, but also with neighboring cells via cell surface receptors. Such interactions, too many to tally, are of paramount importance for the identification of novel disease biomarkers and more personalized therapeutic intervention. Recent advances in big data analytics have allowed the development of online databases where researchers can take advantage of a stochastic evaluation of all the possible interactions and narrow them down to only those of interest for their study, respectively. This novel approach addresses the limitations that currently exist in studies, expands our understanding on ECM interactions, and has the potential to advance the development of targeted therapies. In this article we present the current trends in ECM biology research and highlight its importance in tissue integrity, the main interaction networks, ECM-mediated cell functional properties and issues related to pharmacological targeting.


Asunto(s)
Matriz Extracelular , Neoplasias , Humanos , Matriz Extracelular/metabolismo , Neoplasias/metabolismo , Biología
6.
Mol Biol Rep ; 50(11): 8937-8947, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37710072

RESUMEN

Increased hyaluronan deposition (HA) in various cancer tissues, including sarcomas, correlates with disease progression. The receptor for hyaluronic acid-mediated motility (RHAMM) expression is elevated in most human cancers. ß-catenin is a critical downstream mediator of the Wnt signaling pathways, facilitating carcinogenic events characterized by deregulated cell proliferation. We previously showed that low molecular weight (LMW) HA/RHAMM/ß-catenin signaling axis increases HT1080 fibrosarcoma cell growth. Here, focusing on mechanistic aspects and utilizing immunofluorescence and immunoprecipitation, we demonstrate that LMW HA treatment enhanced RHAMM intracellular localization (p ≤ 0.001) and RHAMM/ß-catenin colocalization in HT1080 fibrosarcoma cells (p ≤ 0.05). Downregulating endogenous HA attenuated the association of RHAMM/ß-catenin in HT1080 fibrosarcoma cells (p ≤ 0.0.01). Notably, Axin-2, the key ß-catenin degradation complex component, and RHAMM were demonstrated to form a complex primarily to cell membranes, enhanced by LMW HA (p ≤ 0.01). In contrast, LMW HA attenuated the association of ß-catenin and Axin-2 (p ≤ 0.05). The utilization of FH535, a Wnt signaling inhibitor, showed that LMW HA partially rescued the Wnt-dependent growth of HT1080 cells and restored the expression of Wnt/ß-catenin mediators, cyclin-D1 and c-myc (p ≤ 0.05). B6FS fibrosarcoma cells with different HA metabolism do not respond to the LMW HA growth stimulus (p = NS). The present study identifies a novel LMW HA/RHAMM mechanism in a fibrosarcoma model. LMW HA regulates intracellular RHAMM expression, which acts as a scaffold protein binding ß-catenin and Axin-2 at different cellular compartments to increase ß-catenin expression, transcriptional activity, and fibrosarcoma growth.


Asunto(s)
Fibrosarcoma , Ácido Hialurónico , Humanos , Ácido Hialurónico/farmacología , Proteína Axina/genética , Proteína Axina/metabolismo , beta Catenina/metabolismo , Receptores de Hialuranos/genética , Receptores de Hialuranos/metabolismo , Proliferación Celular , Fibrosarcoma/metabolismo , Movimiento Celular , Proteínas Portadoras , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo
7.
Mol Biol Rep ; 50(6): 5125-5135, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37118382

RESUMEN

BACKGROUND: Osteoarthritis (OA) is a common degenerative chronic disease accounting for physical pain, tissue stiffness and mobility restriction. Current therapeutic approaches fail to prevent the progression of the disease considering the limited knowledge on OA pathobiology. During OA progression, the extracellular matrix (ECM) of the cartilage is aberrantly remodeled by chondrocytes. Chondrocytes, being the main cell population of the cartilage, participate in cartilage regeneration process. To this end, modern tissue engineering strategies involve the recruitment of mesenchymal stem cells (MSCs) due to their regenerative capacity as to promote chondrocyte self-regeneration. METHODS AND RESULTS: In the present study, we evaluated the role of type II collagen, as the main matrix macromolecule in the cartilage matrix, to promote chondrogenic differentiation in two MSC in vitro culture systems. The chondrogenic differentiation of human Wharton's jelly- and dental pulp-derived MSCs was investigated over a 24-day culture period on type II collagen coating to improve the binding affinity of MSCs. Functional assays, demonstrated that type II collagen promoted chondrogenic differentiation in both MSCs tested, which was confirmed through gene and protein analysis of major chondrogenic markers. CONCLUSIONS: Our data support that type II collagen contributes as a natural bioscaffold enhancing chondrogenesis in both MSC models, thus enhancing the commitment of MSC-based therapeutic approaches in regenerative medicine to target OA and bring therapy closer to the clinical use.


Asunto(s)
Técnicas de Cultivo de Célula , Condrocitos , Células Madre Mesenquimatosas , Células Madre Mesenquimatosas/citología , Colágeno Tipo II , Humanos , Cordón Umbilical/citología , Pulpa Dental/citología , Condrocitos/citología , Condrocitos/metabolismo , Osteoartritis/terapia , Cultivo Primario de Células/métodos , Metaloproteinasas de la Matriz/metabolismo , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Tratamiento Basado en Trasplante de Células y Tejidos
8.
Molecules ; 28(9)2023 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-37175189

RESUMEN

A facile experimental protocol for the synthesis of poly(ethylene glycol)-modified (PEGylated) gold nanorods (AuNRs@PEG) is presented as well as an effective drug loading procedure using the non-steroidal anti-inflammatory drug (NSAID) naproxen (NAP). The interaction of AuNRs@PEG and drug-loaded AuNRs (AuNRs@PEG@NAP) with calf-thymus DNA was studied at a diverse temperature revealing different interaction modes; AuNRs@PEG may interact via groove-binding and AuNRs@PEG@NAP may intercalate to DNA-bases. The cleavage activity of the gold nanoparticles for supercoiled circular pBR322 plasmid DNA was studied by gel electrophoresis while their affinity for human and bovine serum albumins was also evaluated. Drug-release studies revealed a pH-sensitive behavior with a release up to a maximum of 24% and 33% NAP within the first 180 min at pH = 4.2 and 6.8, respectively. The cytotoxicity of AuNRs@PEG and AuNRs@PEG@NAP was evaluated against MCF-7 and MDA-MB-231 breast cancer cell lines. The development of AuNRs as an efficient non-steroidal anti-inflammatory drugs (NSAIDs) delivery system for chemotherapy is still in its infancy. The present work can shed light and inspire other research groups to work in this direction.


Asunto(s)
Nanopartículas del Metal , Nanotubos , Humanos , Oro , Antiinflamatorios no Esteroideos/farmacología , Concentración de Iones de Hidrógeno , Antiinflamatorios
9.
Am J Physiol Cell Physiol ; 322(5): C825-C832, 2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35294845

RESUMEN

Proteoglycans consist one of the major extracellular matrix class of biomolecules that demonstrate nodal roles in cancer progression. Modern diagnostic and therapeutic approaches include proteoglycan detection and pharmacological targeting in various cancer types. Proteoglycans orchestrate critical signaling pathways for cancer development and progression through dynamic interactions with matrix components. It is well established that the epigenetic signatures of cancer cells play critical role in guiding their functional properties and metastatic potential. Secreted microRNAs (miRNAs) reside in a complex network with matrix proteoglycans, thus affecting cell-cell and cell-matrix communication. This mini-review aims to highlight current knowledge on the cell-surface proteoglycan-mediated signaling cascades that regulate miRNA biogenesis in cancer. Moreover, the miRNA-mediated proteoglycan regulation during cancer progression and mechanistic aspects on the way that proteoglycans affect miRNA expression are presented. Recent advances on the role of cell surface proteoglycans in exosome biogenesis and miRNA packaging and expression are also discussed.


Asunto(s)
MicroARNs , Neoplasias , Matriz Extracelular/metabolismo , Humanos , MicroARNs/metabolismo , Neoplasias/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Transducción de Señal/fisiología
10.
IUBMB Life ; 74(10): 943-954, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35261139

RESUMEN

Extracellular matrix (ECM) critically regulates cancer cell behavior by governing cell signaling and properties. Hyaluronan (HA) acts as a structural and functional ECM component that mediates critical properties of cancer cells in a molecular size-dependent manner. HA fragments secreted by cancer-associated fibroblasts (CAFs) reveal the correlation of HA to CAF-mediated matrix remodeling, a key step for the initiation of metastasis. The main goal of this article is to highlight the vital functions of HA in cancer cell initiation and progression as well as HA-mediated paracrine interactions among cancer and stromal cells. Furthermore, the HA implication in mediating immune responses to cancer progression is also discussed. Novel data on the role of HA in the formation of pre-metastatic niche may contribute towards the improvement of current theranostic approaches that benefit cancer management.


Asunto(s)
Ácido Hialurónico , Neoplasias , Matriz Extracelular , Humanos , Receptores de Hialuranos , Ácido Hialurónico/química , Inmunidad , Neoplasias/genética
11.
Molecules ; 27(2)2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-35056762

RESUMEN

Polyamine toxins (PATs) are conjugates of polyamines (PAs) with lipophilic carboxylic acids, which have been recently shown to present antiproliferative activity. Ten analogs of the spider PATs Agel 416, HO-416b, and JSTX-3 and the wasp PAT PhTX-433 were synthesized with changes in the lipophilic head group and/or the PA chain, and their antiproliferative activity was evaluated on MCF-7 and MDA-MB-231 breast cancer cells, using Agel 416 and HO-416b as reference compounds. All five analogs of PhTX-433 were of very low activity on both cell lines, whereas the two analogs of JSTX-3 were highly active only on the MCF-7 cell line with IC50 values of 2.63-2.81 µΜ. Of the remaining three Agel 416 or HO-416b analogs, only the one with the spermidine chain was highly active on both cells with IC50 values of 3.15-12.6 µM. The two most potent compounds in this series, Agel 416 and HO-416b, with IC50 values of 0.09-3.98 µΜ for both cell lines, were found to have a very weak cytotoxic effect on the MCF-12A normal breast cells. The present study points out that the structure of both the head group and the PA chain determine the strength of the antiproliferative activity of PATs and their selectivity towards different cells.


Asunto(s)
Antineoplásicos/farmacología , Poliaminas/química , Venenos de Araña/síntesis química , Venenos de Araña/farmacología , Animales , Antineoplásicos/química , Proliferación Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Compuestos Heterocíclicos/síntesis química , Compuestos Heterocíclicos/farmacología , Humanos , Indoles/síntesis química , Indoles/farmacología , Células MCF-7 , Estructura Molecular , Poliaminas/síntesis química , Poliaminas/farmacología , Arañas , Relación Estructura-Actividad , Avispas
12.
Semin Cancer Biol ; 62: 116-124, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31310807

RESUMEN

The biological functions of estrogens are regulated by estrogen receptors (ERα and ERß), which contribute in the progression of several hormone-responsive cancer types via estrogen signaling mechanisms. The coordinated actions of ERs and extracellular matrix (ECM) macromolecules are principal mediators of ECM remodeling in the tumor and the adjacent stroma. In breast cancer, ERs are critical biomarkers as their expression in breast tumor determines the disease-free survival, yet guiding treatment decisions and predicting prognosis as well as response to endocrine therapy. In this article, we critically survey the current knowledge on dynamic interactions among ERs and major ECM macromolecules and effectors, such as growth factor receptors, proteoglycans and matrix metalloproteinases, in respect to their key effects in cancer progression, cancer cell functional properties, epithelial-to-mesenchymal transition and epigenetics. Understanding the ERs-mediated ECM reorganization during cancer progression may pave way in identifying novel targets for diagnosis and novel therapeutic approaches for cancer management.


Asunto(s)
Matriz Extracelular/metabolismo , Neoplasias/etiología , Neoplasias/metabolismo , Receptores de Estrógenos/metabolismo , Animales , Biomarcadores de Tumor , Manejo de la Enfermedad , Progresión de la Enfermedad , Susceptibilidad a Enfermedades , Matriz Extracelular/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Neoplasias/patología , Neoplasias/terapia , Medicina de Precisión , Pronóstico , Unión Proteica , Receptores de Estrógenos/antagonistas & inhibidores , Receptores de Estrógenos/química , Transducción de Señal/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
13.
Semin Cancer Biol ; 62: 108-115, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-31279836

RESUMEN

Numerous studies point out serglycin as an important regulator of tumorigenesis in a variety of malignancies. Serglycin expression correlates with the aggressive phenotype of tumor cells and serves as a poor prognostic indicator for disease progression. Although serglycin is considered as an intracellular proteoglycan, it is also secreted in the extracellular matrix by tumor cells affecting cell properties, oncogenic signaling and exosomes cargo. Serglycin directly interacts with CD44 and possibly other cell surface receptors including integrins, evoking cell adhesion and signaling. Serglycin also creates a pro-inflammatory and pro-angiogenic tumor microenvironment by regulating the secretion of proteolytic enzymes, IL-8, TGFß2, CCL2, VEGF and HGF. Hence, serglycin activates multiple signaling cascades that drive angiogenesis, tumor cell growth, epithelial to mesenchymal transition, cancer cell stemness and metastasis. The interference with the tumorigenic functions of serglycin emerges as an attractive prospect to target malignancies.


Asunto(s)
Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transición Epitelial-Mesenquimal , Neoplasias/etiología , Neoplasias/metabolismo , Proteoglicanos/genética , Proteoglicanos/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Animales , Biomarcadores de Tumor , Línea Celular Tumoral , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , Células Madre Neoplásicas/metabolismo
14.
Chem Rev ; 118(18): 9152-9232, 2018 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-30204432

RESUMEN

The extracellular matrix (ECM) constitutes a highly dynamic three-dimensional structural network comprised of macromolecules, such as proteoglycans/glycosaminoglycans (PGs/GAGs), collagens, laminins, fibronectin, elastin, other glycoproteins and proteinases. In recent years, the field of PGs has expanded rapidly. Due to their high structural complexity and heterogeneity, PGs mediate several homeostatic and pathological processes. PGs consist of a protein core and one or more covalently attached GAG chains, which provide the protein cores with the ability to interact with several proteins. The GAG building blocks of PGs significantly influence the chemical and functional properties of PGs. The primary goal of this comprehensive review is to summarize major achievements and paradigm-shifting discoveries made on the PG/GAG chemistry-biology axis, focusing on structural variability, structure-function relationships, metabolic, molecular, and epigenetic mechanisms underlying their synthesis. Recent insights related to exosome biogenesis, degradation, and cell signaling, their status as diagnostic tools and potential pharmacological targets in diseases as well as current applications in nanotechnology and biotechnology are addressed. Moreover, issues related to docking studies, molecular modeling, GAG/PG interaction networks, and their integration are discussed.


Asunto(s)
Glicosaminoglicanos/química , Glicosaminoglicanos/fisiología , Proteoglicanos/química , Proteoglicanos/fisiología , Animales , Línea Celular Tumoral , Epigénesis Genética , Matriz Extracelular/metabolismo , Glicosaminoglicanos/genética , Humanos , Neoplasias/fisiopatología , Enfermedades Neurodegenerativas/fisiopatología , Dominios Proteicos , Proteoglicanos/genética , Transducción de Señal/fisiología
16.
18.
Biochim Biophys Acta ; 1855(2): 276-300, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25829250

RESUMEN

Proteoglycans control numerous normal and pathological processes, among which are morphogenesis, tissue repair, inflammation, vascularization and cancer metastasis. During tumor development and growth, proteoglycan expression is markedly modified in the tumor microenvironment. Altered expression of proteoglycans on tumor and stromal cell membranes affects cancer cell signaling, growth and survival, cell adhesion, migration and angiogenesis. Despite the high complexity and heterogeneity of breast cancer, the rapid evolution in our knowledge that proteoglycans are among the key players in the breast tumor microenvironment suggests their potential as pharmacological targets in this type of cancer. It has been recently suggested that pharmacological treatment may target proteoglycan metabolism, their utilization as targets for immunotherapy or their direct use as therapeutic agents. The diversity inherent in the proteoglycans that will be presented herein provides the potential for multiple layers of regulation of breast tumor behavior. This review summarizes recent developments concerning the biology of selected proteoglycans in breast cancer, and presents potential targeted therapeutic approaches based on their novel key roles in breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neovascularización Patológica/genética , Proteoglicanos/biosíntesis , Investigación Biomédica Traslacional , Neoplasias de la Mama/patología , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Terapia Molecular Dirigida , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/patología , Proteoglicanos/antagonistas & inhibidores , Proteoglicanos/uso terapéutico , Transducción de Señal/genética , Microambiente Tumoral/genética
19.
Cell Tissue Res ; 365(3): 643-55, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27365088

RESUMEN

Cancer cell behavior is not only governed by tumor cell-autonomous properties but also by the surrounding tumor stroma. Cancer-associated fibroblasts, blood vessels, immune cells and the extracellular matrix of the tumor microenvironment have a profound influence on tumor progression. Proteoglycans control various normal and pathological processes, modulating cell proliferation and motility, cell-matrix interactions, immune cell recruitment and angiogenesis. They are major mediators of cancer cell behavior though a dynamic interplay with extracellular matrix components. During cancer progression, their altered expression can promote the activation of several signaling cascades regulating crucial functional properties of cancer cells. Notably, the function of cell surface proteoglycans can be altered by ectodomain shedding, which converts membrane-bound coreceptors into soluble paracrine effector molecules. In this review, we highlight the importance of proteoglycans and their soluble counterparts in cancer progression and the consequences of their interactions with the adjacent stroma. The dynamic interplay among shed proteoglycans and proteolytic enzymes has a significant impact both on tumor cells and their surrounding stroma, with important implications for the diagnosis of this disease and for novel therapeutic approaches. Graphical Abstract Syndecan shedding. The mechanism of shedding involves the proteolytic cleavage of their ectodomain near the plasma membrane by metzincin enzymes, such as metalloproteinases. N-acetylglucosamine-alpha-L-iduronic acid/beta-D-glucuronic acid (HS) chains can be additionally cleaved by heparanase. Syndecan core protein can be further processed by intramembrane enzymatic cleavage. Syndecans are in a dynamic interplay with the extracellular matrix and several receptor-tyrosine-kinases (RTKs) and various growth factors, for which they act as co-receptors, thus mediating numerous signaling pathways.


Asunto(s)
Neoplasias/patología , Proteoglicanos/metabolismo , Animales , Humanos , Modelos Biológicos , Pronóstico , Células del Estroma/patología , Microambiente Tumoral
20.
Bioorg Chem ; 66: 132-44, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27155809

RESUMEN

Two new diastereomeric lignan amides (4 and 5) serving as dimeric caffeic acid-l-DOPA hybrids were synthesized. The synthesis involved the FeCl3-mediated phenol oxidative coupling of methyl caffeate to afford trans-diester 1a as a mixture of enantiomers, protection of the catechol units, regioselective saponification, coupling with a suitably protected l-DOPA derivative, separation of the two diastereomers thus obtained by flash column chromatography and finally global chemoselective deprotection of the catechol units. The effect of hybrids 4 and 5 and related compounds on the proliferation of two breast cancer cell lines with different metastatic potential and estrogen receptor status (MDA-MB-231 and MCF-7) and of one epithelial lung cancer cell line, namely A-549, was evaluated for concentrations ranging from 1 to 256µM and periods of treatment of 24, 48 and 72h. Both hybrids showed interesting and almost equipotent antiproliferative activities (IC50 64-70µM) for the MDA-MB-231 cell line after 24-48h of treatment, but they were more selective and much more potent (IC50 4-16µM) for the MCF-7 cells after 48h of treatment. The highest activity for both hybrids and both breast cancer lines was observed after 72h of treatment (IC50 1-2µM), probably as the result of slow hydrolysis of their methyl ester functions.


Asunto(s)
Amidas/farmacología , Antineoplásicos/farmacología , Ácidos Cafeicos/farmacología , Levodopa/farmacología , Lignanos/farmacología , Amidas/química , Antineoplásicos/síntesis química , Antineoplásicos/química , Ácidos Cafeicos/síntesis química , Ácidos Cafeicos/química , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Levodopa/síntesis química , Levodopa/química , Lignanos/química , Células MCF-7 , Estructura Molecular , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA