Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Opt Lett ; 48(14): 3809-3812, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37450756

RESUMEN

Optical injection locking of a metasurface quantum-cascade (QC) vertical-external-cavity surface-emitting laser (VECSEL) is demonstrated at 2.5 THz using a Schottky diode frequency multiplier chain as the injection source. The spectral properties of the source are transferred to the laser output with a locked linewidth of ∼1 Hz, as measured by a separate subharmonic diode mixer, and a locking bandwidth of ∼300 MHz is achieved. The large locking range is enabled by the microwatt power levels available from modern diode multipliers. The interplay between the injected signal and feedback from external reflections is studied and demonstrated to increase or decrease the locking bandwidth relative to the classic locking range depending on the phase of the feedback.


Asunto(s)
Láseres de Semiconductores , Luz , Diseño de Equipo , Análisis de Falla de Equipo , Electrónica
2.
Nat Nanotechnol ; 3(8): 496-500, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18685638

RESUMEN

The submillimetre or terahertz region of the electromagnetic spectrum contains approximately half of the total luminosity of the Universe and 98% of all the photons emitted since the Big Bang. This radiation is strongly absorbed in the Earth's atmosphere, so space-based terahertz telescopes are crucial for exploring the evolution of the Universe. Thermal emission from the primary mirrors in these telescopes can be reduced below the level of the cosmic background by active cooling, which expands the range of faint objects that can be observed. However, it will also be necessary to develop bolometers-devices for measuring the energy of electromagnetic radiation-with sensitivities that are at least two orders of magnitude better than the present state of the art. To achieve this sensitivity without sacrificing operating speed, two conditions are required. First, the bolometer should be exceptionally well thermally isolated from the environment; second, its heat capacity should be sufficiently small. Here we demonstrate that these goals can be achieved by building a superconducting hot-electron nanobolometer. Its design eliminates the energy exchange between hot electrons and the leads by blocking electron outdiffusion and photon emission. The thermal conductance between hot electrons and the thermal bath, controlled by electron-phonon interactions, becomes very small at low temperatures ( approximately 1 x 10-16 W K-1 at 40 mK). These devices, with a heat capacity of approximately 1 x 10-19 J K-1, are sufficiently sensitive to detect single terahertz photons in submillimetre astronomy and other applications based on quantum calorimetry and photon counting.


Asunto(s)
Astronomía/instrumentación , Calor , Nanotecnología/instrumentación , Física , Campos Electromagnéticos , Electrones , Transferencia de Energía , Diseño de Equipo , Niobio/química , Fotones , Piperidonas/química , Polimetil Metacrilato/química , Sensibilidad y Especificidad , Silicio/química , Compuestos de Silicona/química , Dióxido de Silicio/química , Propiedades de Superficie , Conductividad Térmica , Titanio/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA