Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Physiology (Bethesda) ; 36(1): 52-60, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33325819

RESUMEN

Dissection of cell signaling requires tools that can mimic spatiotemporal dynamics of individual pathways in living cells. Optogenetic methods enable manipulation of signaling processes with precise timing and local control. In this review, we describe recent optogenetic approaches for regulation of cell signaling, highlight their advantages and limitations, and discuss examples of their application.


Asunto(s)
Optogenética , Transducción de Señal
2.
Curr Top Membr ; 88: 205-234, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34862027

RESUMEN

Membrane protrusions are a critical facet of cell function. Mediating fundamental processes such as cell migration, cell-cell interactions, phagocytosis, as well as assessment and remodeling of the cell environment. Different protrusion types and morphologies can promote different cellular functions and occur downstream of distinct signaling pathways. As such, techniques to quantify and understand the inner workings of protrusion dynamics are critical for a comprehensive understanding of cell biology. In this chapter, we describe approaches to analyze cellular protrusions and correlate physical changes in cell morphology with biochemical signaling processes. We address methods to quantify and characterize protrusion types and velocity, mathematical approaches to predictive models of cytoskeletal changes, and implementation of protein engineering and biosensor design to dissect cell signaling driving protrusive activity. Combining these approaches allows cell biologists to develop a comprehensive understanding of the dynamics of membrane protrusions.


Asunto(s)
Extensiones de la Superficie Celular , Seudópodos , Actinas , Movimiento Celular , Citoesqueleto , Endocitosis
3.
Am J Physiol Cell Physiol ; 316(1): C92-C103, 2019 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-30427721

RESUMEN

Angiogenesis is initiated in response to a variety of external cues, including mechanical and biochemical stimuli; however, the underlying signaling mechanisms remain unclear. Here, we investigated the proangiogenic role of the endothelial mechanosensor Piezo1. Genetic deletion and pharmacological inhibition of Piezo1 reduced endothelial sprouting and lumen formation induced by wall shear stress and proangiogenic mediator sphingosine 1-phosphate, whereas Piezo1 activation by selective Piezo1 activator Yoda1 enhanced sprouting angiogenesis. Similarly to wall shear stress, sphingosine 1-phosphate functioned by activating the Ca2+ gating function of Piezo1, which in turn signaled the activation of the matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase during sprouting angiogenesis. Studies in mice in which Piezo1 was conditionally deleted in endothelial cells demonstrated the requisite role of sphingosine 1-phosphate-dependent activation of Piezo1 in mediating angiogenesis in vivo. These results taken together suggest that both mechanical and biochemical stimuli trigger Piezo1-mediated Ca2+ influx and thereby activate matrix metalloproteinase-2 and membrane type 1 matrix metalloproteinase and synergistically facilitate sprouting angiogenesis.


Asunto(s)
Canales Iónicos/deficiencia , Metaloproteinasa 14 de la Matriz/metabolismo , Neovascularización Fisiológica/fisiología , Transducción de Señal/fisiología , Animales , Células Cultivadas , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Canales Iónicos/genética , Metaloproteinasa 14 de la Matriz/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
4.
Proc Natl Acad Sci U S A ; 113(52): 14976-14981, 2016 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-27956599

RESUMEN

Physiological stimuli activate protein kinases for finite periods of time, which is critical for specific biological outcomes. Mimicking this transient biological activity of kinases is challenging due to the limitations of existing methods. Here, we report a strategy enabling transient kinase activation in living cells. Using two protein-engineering approaches, we achieve independent control of kinase activation and inactivation. We show successful regulation of tyrosine kinase c-Src (Src) and Ser/Thr kinase p38α (p38), demonstrating broad applicability of the method. By activating Src for finite periods of time, we reveal how the duration of kinase activation affects secondary morphological changes that follow transient Src activation. This approach highlights distinct roles for sequential Src-Rac1- and Src-PI3K-signaling pathways at different stages during transient Src activation. Finally, we demonstrate that this method enables transient activation of Src and p38 in a specific signaling complex, providing a tool for targeted regulation of individual signaling pathways.


Asunto(s)
Activación Enzimática , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Familia-src Quinasas/metabolismo , Proteína Tirosina Quinasa CSK , Células HeLa , Humanos , Mutación , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Ingeniería de Proteínas , Transducción de Señal , Biología Sintética
5.
Proc Natl Acad Sci U S A ; 111(34): 12420-5, 2014 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-25118278

RESUMEN

The Src kinase family comprises nine homologous members whose distinct expression patterns and cellular distributions indicate that they have unique roles. These roles have not been determined because genetic manipulation has not produced clearly distinct phenotypes, and the kinases' homology complicates generation of specific inhibitors. Through insertion of a modified FK506 binding protein (insertable FKBP12, iFKBP) into the protein kinase isoforms Fyn, Src, Lyn, and Yes, we engineered kinase analogs that can be activated within minutes in living cells (RapR analogs). Combining our RapR analogs with computational tools for quantifying and characterizing cellular dynamics, we demonstrate that Src family isoforms produce very different phenotypes, encompassing cell spreading, polarized motility, and production of long, thin cell extensions. Activation of Src and Fyn led to patterns of kinase translocation that correlated with morphological changes in temporally distinct stages. Phenotypes were dependent on N-terminal acylation, not on Src homology 3 (SH3) and Src homology 2 (SH2) domains, and correlated with movement between a perinuclear compartment, adhesions, and the plasma membrane.


Asunto(s)
Familia-src Quinasas/química , Familia-src Quinasas/metabolismo , Acilación , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Fenómenos Biofísicos , Células COS , Chlorocebus aethiops , Activación Enzimática , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Fenotipo , Ingeniería de Proteínas , Proteínas Proto-Oncogénicas c-fyn/química , Proteínas Proto-Oncogénicas c-fyn/genética , Proteínas Proto-Oncogénicas c-fyn/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Proteína 1A de Unión a Tacrolimus/química , Proteína 1A de Unión a Tacrolimus/genética , Proteína 1A de Unión a Tacrolimus/metabolismo , Dominios Homologos src , Familia-src Quinasas/genética
6.
Nat Chem Biol ; 10(4): 286-90, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24609359

RESUMEN

We describe an approach to selectively activate a kinase in a specific protein complex or at a specific subcellular location within living cells and within minutes. This reveals the effects of specific kinase pathways without time for genetic compensation. The new technique, dubbed rapamycin-regulated targeted activation of pathways (RapRTAP), was used to dissect the role of Src kinase interactions with FAK and p130Cas in cell motility and morphodynamics. The overall effects of Src activation on cell morphology and adhesion dynamics were first quantified, without restricting effector access. Subsets of Src-induced behaviors were then attributed to specific interactions between Src and the two downstream proteins. Activation of Src in the cytoplasm versus at the cell membrane also produced distinct phenotypes. The conserved nature of the kinase site modified for RapRTAP indicates that the technique can be applied to many kinases.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Genes src/efectos de los fármacos , Proteínas Quinasas/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Adhesión Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/ultraestructura , Movimiento Celular/genética , Proliferación Celular/efectos de los fármacos , Proteína Sustrato Asociada a CrK/genética , Proteína Sustrato Asociada a CrK/metabolismo , Citoplasma/enzimología , Citoplasma/ultraestructura , Quinasa 1 de Adhesión Focal/genética , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Microscopía Fluorescente , Fenotipo , Seudópodos/efectos de los fármacos , Seudópodos/ultraestructura , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura , Proteínas de Unión a Tacrolimus/genética , Proteínas de Unión a Tacrolimus/metabolismo
7.
Proc Natl Acad Sci U S A ; 110(17): 6800-4, 2013 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-23569285

RESUMEN

Design of a regulatable multistate protein is a challenge for protein engineering. Here we design a protein with a unique topology, called uniRapR, whose conformation is controlled by the binding of a small molecule. We confirm switching and control ability of uniRapR in silico, in vitro, and in vivo. As a proof of concept, uniRapR is used as an artificial regulatory domain to control activity of kinases. By activating Src kinase using uniRapR in single cells and whole organism, we observe two unique phenotypes consistent with its role in metastasis. Activation of Src kinase leads to rapid induction of protrusion with polarized spreading in HeLa cells, and morphological changes with loss of cell-cell contacts in the epidermal tissue of zebrafish. The rational creation of uniRapR exemplifies the strength of computational protein design, and offers a powerful means for targeted activation of many pathways to study signaling in living organisms.


Asunto(s)
Activación Enzimática/fisiología , Transición Epitelial-Mesenquimal/fisiología , Modelos Moleculares , Conformación Proteica , Ingeniería de Proteínas/métodos , Proteínas/química , Animales , Biología Computacional/métodos , Células HeLa , Humanos , Ligandos , Termodinámica , Pez Cebra , Familia-src Quinasas/metabolismo
8.
Mol Pharmacol ; 86(3): 252-62, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24958816

RESUMEN

Gastrin-releasing peptide receptor (GRPR) is ectopically expressed in over 60% of colon cancers. GRPR expression has been correlated with increased colon cancer cell migration. However, the signaling pathway by which GRPR activation leads to increased cancer cell migration is not well understood. We set out to molecularly dissect the GRPR signaling pathways that control colon cancer cell migration through regulation of small GTPase RhoA. Our results show that GRP stimulation activates RhoA predominantly through G13 heterotrimeric G-protein signaling. We also demonstrate that postsynaptic density 95/disk-large/ZO-1 (PDZ)-RhoGEF (PRG), a member of regulator of G-protein signaling (RGS)-homology domain (RH) containing guanine nucleotide exchange factors (RH-RhoGEFs), is the predominant activator of RhoA downstream of GRPR. We found that PRG is required for GRP-stimulated colon cancer cell migration, through activation of RhoA-Rho-associated kinase (ROCK) signaling axis. In addition, PRG-RhoA-ROCK pathway also contributes to cyclo-oxygenase isoform 2 (Cox-2) expression. Increased Cox-2 expression is correlated with increased production of prostaglandin-E2 (PGE2), and Cox-2-PGE2 signaling contributes to total GRPR-mediated cancer cell migration. Our analysis reveals that PRG is overexpressed in colon cancer cell lines. Overall, our results have uncovered a key mechanism for GRPR-regulated colon cancer cell migration through the Gα13-PRG-RhoA-ROCK pathway.


Asunto(s)
Neoplasias del Colon/metabolismo , Subunidades alfa de la Proteína de Unión al GTP G12-G13/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores de Bombesina/metabolismo , Factores de Intercambio de Guanina Nucleótido Rho/metabolismo , Proteína de la Zonula Occludens-1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Células CACO-2 , Movimiento Celular , Neoplasias del Colon/patología , Ciclooxigenasa 2/biosíntesis , Dinoprostona/biosíntesis , Homólogo 4 de la Proteína Discs Large , Células HT29 , Humanos , Estructura Terciaria de Proteína , Transducción de Señal , Quinasas Asociadas a rho/metabolismo
9.
J Mol Biol ; 434(17): 167620, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35513109

RESUMEN

Allosteric regulation of proteins has been utilized to study various aspects of cell signaling, from unicellular events to organism-wide phenotypes. However, traditional methods of allosteric regulation, such as constitutively active mutants and inhibitors, lack tight spatiotemporal control. This often leads to unintended signaling consequences that interfere with data interpretation. To overcome these obstacles, researchers employed protein engineering approaches that enable tight control of protein function through allosteric mechanisms. These methods provide high specificity as well as spatial and temporal precision in regulation of protein activity in vitro and in vivo. In this review, we focus on the recent advancements in engineered allosteric regulation and discuss the various bioengineered allosteric techniques available now, from chimeric GPCRs to chemogenetic and optogenetic switches. We highlight the benefits and pitfalls of each of these techniques as well as areas in which future improvements can be made. Additionally, we provide a brief discussion on implementation of engineered allosteric regulation approaches, demonstrating that these tools can shed light on elusive biological events and have the potential to be utilized in precision medicine.


Asunto(s)
Optogenética , Ingeniería de Proteínas , Proteínas , Regulación Alostérica , Optogenética/métodos , Proteínas/química , Transducción de Señal
10.
Sci Rep ; 12(1): 5291, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35351946

RESUMEN

Genetically encoded, Förster resonance energy transfer (FRET) biosensors enable live-cell optical imaging of signaling molecules. Small conformational changes often limit the dynamic range of biosensors that combine fluorescent proteins (FPs) and sensing domains into a single polypeptide. To address this, we developed FRET and lanthanide-based FRET (LRET) biosensors of Rac1 activation with two key features that enhance sensitivity and dynamic range. For one, alpha helical linker domains separate FRET partners and ensure a large conformational change and FRET increase when activated Rac1 at the biosensor C-terminus interacts with an amino-terminal Rac binding domain. Incorporation of a luminescent Tb(III) complex with long (~ ms) excited state lifetime as a LRET donor enabled time-gated luminescence measurements of Rac1 activity in cell lysates. The LRET dynamic range increased with ER/K linker length up to 1100% and enabled robust detection of Rac1 inhibition in 96-well plates. The ER/K linkers had a less pronounced, but still significant, effect on conventional FRET biosensors (with FP donors and acceptors), and we were able to dynamically image Rac1 activation at cell edges using fluorescence microscopy. The results herein highlight the potential of FRET and LRET biosensors with ER/K linkers for cell-based imaging and screening of protein activities.


Asunto(s)
Técnicas Biosensibles , Elementos de la Serie de los Lantanoides , Técnicas Biosensibles/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Luminiscencia , Proteínas
11.
J Cell Biol ; 221(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35829702

RESUMEN

Protein tyrosine phosphatases (PTPases) are critical mediators of dynamic cell signaling. A tool capable of identifying transient signaling events downstream of PTPases is essential to understand phosphatase function on a physiological time scale. We report a broadly applicable protein engineering method for allosteric regulation of PTPases. This method enables dissection of transient events and reconstruction of individual signaling pathways. Implementation of this approach for Shp2 phosphatase revealed parallel MAPK and ROCK II dependent pathways downstream of Shp2, mediating transient cell spreading and migration. Furthermore, we show that the N-SH2 domain of Shp2 regulates MAPK-independent, ROCK II-dependent cell migration. Engineered targeting of Shp2 activity to different protein complexes revealed that Shp2-FAK signaling induces cell spreading whereas Shp2-Gab1 or Shp2-Gab2 mediates cell migration. We identified specific transient morphodynamic processes induced by Shp2 and determined the role of individual signaling pathways downstream of Shp2 in regulating these events. Broad application of this approach is demonstrated by regulating PTP1B and PTP-PEST phosphatases.


Asunto(s)
Proteína Tirosina Fosfatasa no Receptora Tipo 11 , Transducción de Señal , Regulación Alostérica , Movimiento Celular , Quinasa 1 de Adhesión Focal/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Tirosina Fosfatasa no Receptora Tipo 11/genética , Proteína Tirosina Fosfatasa no Receptora Tipo 11/metabolismo , Quinasas Asociadas a rho/metabolismo
12.
Cancer Lett ; 526: 112-130, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826547

RESUMEN

The cytoskeleton and cell-matrix adhesions constitute a dynamic network that controls cellular behavior during development and cancer. The Focal Adhesion Kinase (FAK) is a central actor of these cell dynamics, promoting cell-matrix adhesion turnover and active membrane fluctuations. However, the initial steps leading to FAK activation and subsequent promotion of cell dynamics remain elusive. Here, we report that the serine/threonine kinase PKCθ participates in the initial steps of FAK activation. PKCθ, which is strongly expressed in aggressive human breast cancers, controls the dynamics of cell-matrix adhesions and active protrusions through direct FAK activation, thereby promoting cell invasion and lung metastases. Using various tools for in vitro and live cell studies, we precisely decipher the molecular mechanisms of FAK activation. PKCθ directly interacts with the FAK FERM domain to open FAK conformation through PKCθ's specific V3 domain, while phosphorylating FAK at newly identified serine/threonine residues within nascent adhesions, inducing cell dynamics and aggressive behavior. This study thus places PKCθ-directed FAK opening and phosphorylations as an original mechanism controlling dynamic, migratory, and invasive abilities of aggressive breast cancer cells, further strengthening the emerging oncogenic function of PKCθ.


Asunto(s)
Neoplasias de la Mama/fisiopatología , Citoesqueleto/metabolismo , Quinasa 1 de Adhesión Focal/metabolismo , Proteína Quinasa C-theta/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Seudópodos/metabolismo , Animales , Adhesión Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Femenino , Xenoinjertos , Humanos , Células MCF-7 , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Fosforilación
13.
J Am Chem Soc ; 133(3): 420-3, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21162531

RESUMEN

We developed a new system for light-induced protein dimerization in living cells using a photocaged analogue of rapamycin together with an engineered rapamycin binding domain. Using focal adhesion kinase as a target, we demonstrated successful light-mediated regulation of protein interaction and localization in living cells. Modification of this approach enabled light-triggered activation of a protein kinase and initiation of kinase-induced phenotypic changes in vivo.


Asunto(s)
Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Luz , Sirolimus/química , Proteínas de Unión a Tacrolimus/metabolismo , Dimerización , Células HEK293 , Humanos , Modelos Moleculares , Simulación de Dinámica Molecular , Proteínas de Unión a Tacrolimus/química
14.
J Cell Biol ; 219(2)2020 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-31865373

RESUMEN

Podosomes are compartmentalized actin-rich adhesions, defined by their ability to locally secrete proteases and remodel extracellular matrix. Matrix remodeling by endothelial podosomes facilitates invasion and thereby vessel formation. However, the mechanisms underlying endothelial podosome formation and function remain unclear. Here, we demonstrate that Septin2, Septin6, and Septin7 are required for maturation of nascent endothelial podosomes into matrix-degrading organelles. We show that podosome development occurs through initial mobilization of the scaffolding protein Tks5 and F-actin accumulation, followed by later recruitment of Septin2. Septin2 localizes around the perimeter of podosomes in close proximity to the basolateral plasma membrane, and phosphoinositide-binding residues of Septin2 are required for podosome function. Combined, our results suggest that the septin cytoskeleton forms a diffusive barrier around nascent podosomes to promote their maturation. Finally, we show that Septin2-mediated regulation of podosomes is critical for endothelial cell invasion associated with angiogenesis. Therefore, targeting of Septin2-mediated podosome formation is a potentially attractive anti-angiogenesis strategy.


Asunto(s)
Proteínas de Ciclo Celular/genética , Neovascularización Fisiológica/genética , Septinas/genética , Citoesqueleto de Actina/genética , Proteínas Adaptadoras del Transporte Vesicular/genética , Animales , Movimiento Celular/genética , Células Cultivadas , Células Endoteliales/metabolismo , Matriz Extracelular/genética , Humanos , Morfogénesis/genética , Podosomas/genética
15.
Elife ; 92020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32965214

RESUMEN

Engineered allosteric regulation of protein activity provides significant advantages for the development of robust and broadly applicable tools. However, the application of allosteric switches in optogenetics has been scarce and suffers from critical limitations. Here, we report an optogenetic approach that utilizes an engineered Light-Regulated (LightR) allosteric switch module to achieve tight spatiotemporal control of enzymatic activity. Using the tyrosine kinase Src as a model, we demonstrate efficient regulation of the kinase and identify temporally distinct signaling responses ranging from seconds to minutes. LightR-Src off-kinetics can be tuned by modulating the LightR photoconversion cycle. A fast cycling variant enables the stimulation of transient pulses and local regulation of activity in a selected region of a cell. The design of the LightR module ensures broad applicability of the tool, as we demonstrate by achieving light-mediated regulation of Abl and bRaf kinases as well as Cre recombinase.


Cells need to sense and respond to their environment. To do this, they have dedicated proteins that interpret outside signals and convert them into appropriate responses that are only active at a specific time and location within the cell. However, in many diseases, including cancer, these signaling proteins are switched on for too long or are active in the wrong place. To better understand why this is the case, researchers manipulate proteins to identify the processes they regulate. One way to do this is to engineer proteins so that they can be controlled by light, turning them either on or off. Ideally, a light-controlled tool can activate proteins at defined times, control proteins in specific locations within the cell and regulate any protein of interest. However, current methods do not combine all of these requirements in one tool, and scientists often have to use different methods, depending on the topic they are researching. Now, Shaaya et al. set out to develop a single tool that combines all required features. The researchers engineered a light-sensitive 'switch' that allowed them to activate a specific protein by illuminating it with blue light and to deactivate it by turning the light off. Unlike other methods, the new tool uses a light-sensitive switch that works like a clamp. In the dark, the clamp is open, which 'stretches' and distorts the protein, rendering it inactive. In light, however, the clamp closes and the structure of the protein and its activity are restored. Moreover, it can activate proteins multiple times, control proteins in specific locations within the cell and it can be applied to a variety of proteins. This specific design makes it possible to combine multiple features in one tool that will both simplify and broaden its use to investigate specific proteins and signaling pathways in a broad range of diseases.


Asunto(s)
Optogenética/métodos , Familia-src Quinasas/química , Regulación Alostérica , Enzimas/química , Luz
16.
J Cell Biol ; 166(2): 225-35, 2004 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-15263018

RESUMEN

Shigella, the causative agent of bacillary dysentery, invades epithelial cells in a process involving Src tyrosine kinase signaling. Cortactin, a ubiquitous actin-binding protein present in structures of dynamic actin assembly, is the major protein tyrosine phosphorylated during Shigella invasion. Here, we report that RNA interference silencing of cortactin expression, as does Src inhibition in cells expressing kinase-inactive Src, interferes with actin polymerization required for the formation of cellular extensions engulfing the bacteria. Shigella invasion induced the recruitment of cortactin at plasma membranes in a tyrosine phosphorylation-dependent manner. Overexpression of wild-type forms of cortactin or the adaptor protein Crk favored Shigella uptake, and Arp2/3 binding-deficient cortactin derivatives or an Src homology 2 domain Crk mutant interfered with bacterial-induced actin foci formation. Crk was shown to directly interact with tyrosine-phosphorylated cortactin and to condition cortactin-dependent actin polymerization required for Shigella uptake. These results point at a major role for a Crk-cortactin complex in actin polymerization downstream of tyrosine kinase signaling.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras del Transporte Vesicular/fisiología , Células Epiteliales/microbiología , Proteínas de Microfilamentos/fisiología , Shigella/fisiología , Proteínas Adaptadoras del Transporte Vesicular/genética , Proteínas Adaptadoras del Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Membrana Celular/microbiología , Extensiones de la Superficie Celular/microbiología , Cortactina , Endocitosis , Células Epiteliales/ultraestructura , Células HeLa , Humanos , Proteínas de Microfilamentos/genética , Proteínas de Microfilamentos/metabolismo , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-crk , ARN Interferente Pequeño/farmacología
17.
Cell Chem Biol ; 26(8): 1081-1094.e6, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31130521

RESUMEN

In the current model of endothelial barrier regulation, the tyrosine kinase SRC is purported to induce disassembly of endothelial adherens junctions (AJs) via phosphorylation of VE cadherin, and thereby increase junctional permeability. Here, using a chemical biology approach to temporally control SRC activation, we show that SRC exerts distinct time-variant effects on the endothelial barrier. We discovered that the immediate effect of SRC activation was to transiently enhance endothelial barrier function as the result of accumulation of VE cadherin at AJs and formation of morphologically distinct reticular AJs. Endothelial barrier enhancement via SRC required phosphorylation of VE cadherin at Y731. In contrast, prolonged SRC activation induced VE cadherin phosphorylation at Y685, resulting in increased endothelial permeability. Thus, time-variant SRC activation differentially phosphorylates VE cadherin and shapes AJs to fine-tune endothelial barrier function. Our work demonstrates important advantages of synthetic biology tools in dissecting complex signaling systems.


Asunto(s)
Células Endoteliales/metabolismo , Familia-src Quinasas/metabolismo , Permeabilidad de la Membrana Celular , Células Cultivadas , Humanos , Factores de Tiempo
18.
Curr Biol ; 12(21): 1852-7, 2002 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-12419186

RESUMEN

The GTPase dynamin is required for endocytic vesicle formation. Dynamin has also been implicated in regulating the actin cytoskeleton, but the mechanism by which it does so is unclear. Through interactions via its proline-rich domain (PRD), dynamin binds several proteins, including cortactin, profilin, syndapin, and murine Abp1, that regulate the actin cytoskeleton. We investigated the interaction of dynamin2 and cortactin in regulating actin assembly in vivo and in vitro. When expressed in cultured cells, a dynamin2 mutant with decreased affinity for GTP decreased actin dynamics within the cortical actin network. Expressed mutants of cortactin that have decreased binding of Arp2/3 complex or dynamin2 also decreased actin dynamics. Dynamin2 influenced actin nucleation by purified Arp2/3 complex and cortactin in vitro in a biphasic manner. Low concentrations of dynamin2 enhanced actin nucleation by Arp2/3 complex and cortactin, and high concentrations were inhibitory. Dynamin2 promoted the association of actin filaments nucleated by Arp2/3 complex and cortactin with phosphatidylinositol 4,5-bisphosphate (PIP2)-containing lipid vesicles. GTP hydrolysis altered the organization of the filaments and the lipid vesicles. We conclude that dynamin2, through an interaction with cortactin, regulates actin assembly and actin filament organization at membranes.


Asunto(s)
Actinas/metabolismo , Dinamina II/metabolismo , Proteínas de Microfilamentos/metabolismo , Cortactina , GTP Fosfohidrolasas/metabolismo
19.
Curr Biol ; 12(15): 1270-8, 2002 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-12176354

RESUMEN

BACKGROUND: Dynamic actin assembly is required for diverse cellular processes and often involves activation of Arp2/3 complex. Cortactin and N-WASp activate Arp2/3 complex, alone or in concert. Both cortactin and N-WASp contain an acidic (A) domain that is required for Arp2/3 complex binding. RESULTS: We investigated how cortactin and the constitutively active VCA domain of N-WASp interact with Arp2/3 complex. Structural studies showed that cortactin is a thin, elongated monomer. Chemical crosslinking studies demonstrated selective interaction of the Arp2/3 binding NTA domain of cortactin (cortactin NTA) with the Arp3 subunit and VCA with Arp3, Arp2, and ARPC1/p40. Cortactin NTA and VCA crosslinking to the Arp3 subunit were mutually exclusive; however, cortactin NTA did not inhibit VCA crosslinking to Arp2 or ARPC1/p40, nor did it inhibit activation of Arp2/3 complex by VCA. We conducted an experiment in which a saturating concentration of cortactin NTA modestly lowered the binding affinity of VCA for Arp2/3; the results of this experiment provided further evidence for ternary complex formation. Consistent with a common binding site on Arp3, a saturating concentration of VCA abolished binding of cortactin to Arp2/3 complex. CONCLUSIONS: Under certain circumstances, cortactin and N-WASp can bind simultaneously to Arp2/3 complex, accounting for their synergy in activation of actin assembly. The interaction of cortactin NTA with Arp2/3 complex does not inhibit Arp2/3 activation by N-WASp, despite competition for a common binding site located on the Arp3 subunit. These results suggest a model in which cortactin may bridge Arp2/3 complex to actin filaments via Arp3 and N-WASp activates Arp2/3 complex by binding Arp2 and/or ARPC1/p40.


Asunto(s)
Actinas/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteína 2 Relacionada con la Actina , Proteína 3 Relacionada con la Actina , Secuencia de Aminoácidos , Animales , Sitios de Unión , Encéfalo/metabolismo , Bovinos , Pollos , Cortactina , Proteínas del Citoesqueleto/química , Cinética , Proteínas de Microfilamentos/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/metabolismo , Conformación Proteica , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal , Timo/metabolismo , Triptófano , Síndrome de Wiskott-Aldrich , Proteína Neuronal del Síndrome de Wiskott-Aldrich
20.
Curr Biol ; 13(5): 384-93, 2003 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-12620186

RESUMEN

BACKGROUND: Modulation of actin cytoskeleton assembly is an integral step in many cellular events. A key regulator of actin polymerization is Arp2/3 complex. Cortactin, an F-actin binding protein that localizes to membrane ruffles, is an activator of Arp2/3 complex. RESULTS: A yeast two-hybrid screen revealed the interaction of the cortactin Src homology 3 (SH3) domain with a peptide fragment derived from a cDNA encoding a region of WASp-Interacting Protein (WIP). GST-cortactin interacted with WIP in an SH3-dependent manner. The subcellular localization of cortactin and WIP coincided at the cell periphery. WIP increased the efficiency of cortactin-mediated Arp2/3 complex activation of actin polymerization in a concentration-dependent manner. Lastly, coexpression of cortactin and WIP stimulated membrane protrusions. CONCLUSIONS: WIP, a protein involved in filopodia formation, binds to both actin monomers and cortactin. Thus, recruitment of actin monomers to a cortactin-activated Arp2/3 complex likely leads to the observed increase in cortactin activation of Arp2/3 complex by WIP. These data suggest that a cortactin-WIP complex functions in regulating actin-based structures at the cell periphery.


Asunto(s)
Proteínas Portadoras/metabolismo , Membrana Celular/metabolismo , Proteínas del Citoesqueleto/metabolismo , Proteínas de Microfilamentos/metabolismo , Proteína 2 Relacionada con la Actina , Proteína 3 Relacionada con la Actina , Actinas/metabolismo , Animales , Células CHO , Cortactina , Cricetinae , Humanos , Péptidos y Proteínas de Señalización Intracelular , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA