Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 19(2): 1335-1341, 2017 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-27973632

RESUMEN

This study provides a comprehensive insight into the effects of controlled off-stoichiometry on the structural and multiferroic properties of the hexagonal manganite LuMn1-xO3+δ (x = 0.02; δ ∼ 0), supported by neutron powder diffraction measurements confirming single phase P63cm symmetry and evidencing a relevant ferromagnetic component, below TN ∼ 90 K, which breaks the archetypal geometrically frustrated antiferromagnetic state typically ascribed to LuMnO3. The perturbations in the triangular disposition of spins prompt an additional electric polarization contribution and a clear enhancement of the magnetoelectric coupling which are in good agreement with the results of first principles calculations. In addition, Raman spectroscopy, dielectric permittivity, pyroelectric current and magnetic measurements as a function of temperature point out the precursor effects of the magnetic phase transitions involving a strong coupling between spins, lattice and electric order, even above the Néel temperature.

2.
Phys Chem Chem Phys ; 18(19): 13519-23, 2016 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-27140064

RESUMEN

This study explores controlled off-stoichiometric LuMn1+zO3+δ (|z| < 0.1) compounds, intended to retain the utter LuMnO3 intrinsic hexagonal symmetry and ferroelectric properties. X-ray powder diffraction measurements evidenced a single phase P63cm structure. Thermo-gravimetric experiments show a narrow impact of oxygen vacancies while a distinguishable gas exchange at ∼700 K, a surprisingly lower temperature when compared to perovskite systems. A comparison of different nominal ceramics revealed pertinent structural and magnetic property variations owing to subtle self-doping effects. Deviations from the archetypal antiferromagnetic state were detected below ∼90 K suggesting local rearrangements of the nominal Mn(3+) ions matrix, breaking the ideal geometrical spin frustration, leading to a non-compensated magnetic structure.

3.
J Phys Condens Matter ; 26(39): 396002, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25204667

RESUMEN

La0.7Sr0.3Mn(3+)0.85Sb(5+)0.15O3 and La0.7Sr0.3Mn(3+)0.8Sb(5+)0.1Ge(4+)0.1O3 compounds with dominantly isovalent Mn3+ ions were studied by neutron powder diffraction and magnetization measurements. The compounds are basically ferromagnetic, with magnetic moments slightly above of 3 µB/Mn. Upon temperature decrease, the compounds exhibit structural transition from a rhombohedral phase to orbitally disordered orthorhombic one. The structural transitions occur well above the temperature of magnetic ordering (Tc ≈ 130 K). It is suggested that the ferromagnetic state is governed by the positive part of superexchange interactions Mn(3+)‒O‒Mn(3+), which is enhanced by Mn(eg)‒O(2p) hybridization.

4.
J Phys Condens Matter ; 25(31): 316004, 2013 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-23838391

RESUMEN

The evolution of the crystal structure and the magnetic properties was investigated in the La0.5Sr0.5CoO(3-δ) (0 < δ < 0.3) system as a function of the oxygen deficit δ. Compounds with a low oxygen deficit (δ < 0.1) are shown to be predominantly ferromagnetic, while further increase (δ > 0.1) gradually changes the magnetic structure from ferromagnetic to G-type antiferromagnetic and causes a structural transition from rhombohedral to cubic symmetry. Resistivity and magnetoresistance at low temperature increase with increasing of oxygen vacancies. It is argued that oxygen reduction facilitates stabilization of the high spin state of Co(3+) ions. Antiferromagnetic interactions between cobalt ions in the high spin state are found to dominate in compounds with the oxygen deficit δ > 0.18.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA