Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Plant Biotechnol J ; 18(4): 1027-1040, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31584248

RESUMEN

The molecular basis of cell-cell adhesion in woody tissues is not known. Xylem cells in wood particles of hybrid poplar (Populus tremula × P. alba cv. INRA 717-1B4) were separated by oxidation of lignin with acidic sodium chlorite when combined with extraction of xylan and rhamnogalacturonan-I (RG-I) using either dilute alkali or a combination of xylanase and RG-lyase. Acidic chlorite followed by dilute alkali treatment enables cell-cell separation by removing material from the compound middle lamellae between the primary walls. Although lignin is known to contribute to adhesion between wood cells, we found that removing lignin is a necessary but not sufficient condition to effect complete cell-cell separation in poplar lines with various ratios of syringyl:guaiacyl lignin. Transgenic poplar lines expressing an Arabidopsis thaliana gene encoding an RG-lyase (AtRGIL6) showed enhanced cell-cell separation, increased accessibility of cellulose and xylan to hydrolytic enzyme activities, and increased fragmentation of intact wood particles into small cell clusters and single cells under mechanical stress. Our results indicate a novel function for RG-I, and also for xylan, as determinants of cell-cell adhesion in poplar wood cell walls. Genetic control of RG-I content provides a new strategy to increase catalyst accessibility and saccharification yields from woody biomass for biofuels and industrial chemicals.


Asunto(s)
Adhesión Celular , Pectinas/química , Populus , Madera/citología , Pared Celular , Lignina , Plantas Modificadas Genéticamente , Polisacárido Liasas/genética
2.
Plant Physiol ; 171(3): 2101-11, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27221617

RESUMEN

The root cap covers the tip of the root and functions to protect the root from environmental stress. Cells in the last layer of the root cap are known as border cells, or border-like cells (BLCs) in Arabidopsis (Arabidopsis thaliana). These cells separate from the rest of the root cap and are released from its edge as a layer of living cells. BLC release is developmentally regulated, but the mechanism is largely unknown. Here, we show that the transcription factor NIN-LIKE PROTEIN7 (NLP7) is required for the proper release of BLCs in Arabidopsis. Mutations in NLP7 lead to BLCs that are released as single cells instead of an entire layer. NLP7 is highly expressed in BLCs and is activated by exposure to low pH, a condition that causes BLCs to be released as single cells. Mutations in NLP7 lead to decreased levels of cellulose and pectin. Cell wall-loosening enzymes such as CELLULASE5 (CEL5) and a pectin lyase-like gene, as well as the root cap regulators SOMBRERO and BEARSKIN1/2, are activated in nlp7-1 seedlings. Double mutant analysis revealed that the nlp7-1 phenotype depends on the expression level of CEL5 Mutations in NLP7 lead to an increase in susceptibility to a root-infecting fungal pathogen. Together, these data suggest that NLP7 controls the release of BLCs by acting through the cell wall-loosening enzyme CEL5.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citología , Células Vegetales/fisiología , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/microbiología , Proteínas de Arabidopsis/genética , Adhesión Celular , Pared Celular/enzimología , Pared Celular/genética , Celulosa/genética , Celulosa/metabolismo , Fusarium/patogenicidad , Regulación de la Expresión Génica de las Plantas , Concentración de Iones de Hidrógeno , Mutación , Pectinas/genética , Pectinas/metabolismo , Raíces de Plantas/citología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Microbiología del Suelo , Estrés Fisiológico , Factores de Transcripción/genética
3.
RNA ; 17(10): 1907-21, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21880780

RESUMEN

Gene expression in eukaryotes is often enhanced by the presence of introns. Depending on the specific gene, this enhancement can be minor or very large and occurs at both the transcriptional and post-transcriptional levels. The Arabidopsis ERECTA gene contains 27 exons encoding a receptor-like kinase that promotes cell proliferation and inhibits cell differentiation in above-ground plant organs. The expression of ERECTA very strongly depends on the presence of introns. The intronless ERECTA gene does not rescue the phenotype of erecta mutant plants and produces about 500-900 times less protein compared with the identical construct containing introns. This result is somewhat surprising as the region upstream of the ERECTA coding sequence effectively promotes the expression of extraneous genes. Here, we demonstrate that introns are essential for ERECTA mRNA accumulation and, to a lesser extent, for mRNA utilization in translation. Since mRNA produced by intronless ERECTA is degraded at the 3' end, we speculate that introns increase mRNA accumulation through increasing its stability at least in part. No individual intron is absolutely necessary for ERECTA expression, but rather multiple introns in specific locations increase ERECTA expression in an additive manner. The ability of introns to promote ERECTA expression might be linked to the process of splicing and not to a particular intron sequence.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Intrones , Proteínas Serina-Treonina Quinasas/genética , Receptores de Superficie Celular/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Exones , Mutación , Poli A/genética , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/metabolismo , Receptores de Superficie Celular/metabolismo
4.
Plant Physiol ; 159(1): 156-68, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22457425

RESUMEN

The differentiation of stomata provides a convenient model for studying pattern formation in plant tissues. Stomata formation is induced by a set of basic helix-loop-helix transcription factors and inhibited by a signal transduction pathway initiated by TOO MANY MOUTHS (TMM) and ERECTA family (ERf) receptors. The formation of a proper stomata pattern is also dependent upon the restriction of symplastic movement of basic helix-loop-helix transcription factors into neighboring cells, especially in the backgrounds where the function of the TMM/ERf signaling pathway is compromised. Here, we describe a novel mutant of KOBITO1 in Arabidopsis (Arabidopsis thaliana). The kob1-3 mutation leads to the formation of stomata clusters in the erl1 erl2 background but not in the wild type. Cell-to-cell mobility assays demonstrated an increase in intercellular protein trafficking in kob1-3, including increased diffusion of SPEECHLESS, suggesting that the formation of stomata clusters is due to an escape of cell fate-specifying factors from stomatal lineage cells. While plasmodesmatal permeability is increased in kob1-3, we did not detect drastic changes in callose accumulation at the neck regions of the plasmodesmata. Previously, KOBITO1 has been proposed to function in cellulose biosynthesis. Our data demonstrate that disruption of cellulose biosynthesis in the erl1 erl2 background does not lead to the formation of stomata clusters, indicating that cellulose biosynthesis is not a major determining factor for regulating plasmodesmatal permeability. Analysis of KOBITO1 structure suggests that it is a glycosyltransferase-like protein. KOBITO1 might be involved in a carbohydrate metabolic pathway that is essential for both cellulose biosynthesis and the regulation of plasmodesmatal permeability.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Permeabilidad de la Membrana Celular , Proteínas de la Membrana/metabolismo , Estomas de Plantas/fisiología , Plasmodesmos/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Metabolismo de los Hidratos de Carbono , Celulosa/biosíntesis , Celulosa/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cromosomas de las Plantas/metabolismo , Clonación Molecular , Cruzamientos Genéticos , Glucanos/genética , Glucanos/metabolismo , Proteínas de la Membrana/genética , Datos de Secuencia Molecular , Mutación , Estomas de Plantas/crecimiento & desarrollo , Plasmodesmos/fisiología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Plant Signal Behav ; 13(1): e1414122, 2018 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-29215953

RESUMEN

The root cap protects the root from environmental stress and senses gravity. Cells of the last layer of the root cap are shed in a developmentally programmed process. We previously showed that the transcription factor NIN-LIKE PROTEIN7 (NLP7) regulates root cap cell release likely through regulation of CELLULASE5 (CEL5). Here we provide a supplement to that work. We hypothesized that the nlp7 mutant has defects in additional root cap functions. We find that neither gravity sensing nor expression of a root cap cell identity marker is altered in nlp7 but that expression of another cellulase, CEL3, is upregulated. We conclude that NLP7 control of root cap cell release is largely independent of gravity sensing and root cap cell identity.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Sensación de Gravedad , Mutación/genética , Regulación hacia Arriba/genética
6.
Curr Opin Plant Biol ; 24: 24-30, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25636037

RESUMEN

Development in multicellular organisms is the result of designated cellular programs occurring at specific points in time and space. The root is an excellent model to address how spatio-temporal complexity impacts organ development. High-resolution 'omic' approaches have delineated the transcriptional, proteomic, metabolomic, and small RNA profiles of multiple cell types in the Arabidopsis root. Similar approaches have shed light on root cell-type specific transcriptional programs in rice and soybean. These data are being used to identify specific spatio-temporal mechanisms of root development, dissect regulatory networks that control cell identity, and understand hormone responses in the root. Computational modeling of these data combined with new advances in imaging technologies is generating new biological insights into root growth and development.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Glycine max/genética , Glycine max/crecimiento & desarrollo , Glycine max/metabolismo
7.
Mol Plant ; 3(2): 334-46, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20145006

RESUMEN

Sequencing data from 10 species show that a plant hexokinase (HXK) family contains 5-11 genes. Functionally, a given family can include metabolic catalysts, glucose signaling proteins, and non-catalytic, apparent regulatory enzyme homologs. This study has two goals. The first aim is to develop a predictive method to determine which HXK proteins within a species have which type of function. The second aim is to determine whether HXK-dependent glucose signaling proteins occur among more primitive plants, as well as among angiosperms. Using a molecular phylogeny approach, combined with selective experimental testing, we found that non-catalytic HXK homologs might occur in all plants, including the relatively primitive Selaginella moellendorffi. We also found that different lineages of angiosperm HXKs have apparent conserved features for catalytic activity and for sub-cellular targeting. Most higher-plant HXKs are expressed predominantly at mitochondria, with HXKs of one lineage occurring in the plastid, and HXKs of one monocot lineage occurring in the cytosol. Using protoplast transient expression assays, we found that HXK glucose signaling proteins occur likely in all higher plants and in S. moellendorffi as well. Thus, the use of glucose by plant HXK isoforms in metabolism and/or as a regulatory metabolite occurs as widespread, conserved processes.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/enzimología , Evolución Molecular , Hexoquinasa/genética , Secuencia de Aminoácidos , Arabidopsis/clasificación , Arabidopsis/genética , Proteínas de Arabidopsis/química , Citosol/enzimología , Hexoquinasa/química , Hexoquinasa/clasificación , Microscopía Confocal , Mitocondrias/enzimología , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA