RESUMEN
The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. In this study, we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (â¼21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4+ and CD8+ memory T cell responses confirmed these findings and revealed that reduced recognition to Omicron spike is primarily observed within the CD8+ T cell compartment potentially due to escape from HLA binding. Booster vaccination enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.
RESUMEN
The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that escape convalescent and vaccine-induced antibody responses has renewed focus on the development of broadly protective T-cell-based vaccines. Here, we apply structure-based network analysis and assessments of HLA class I peptide stability to define mutationally constrained CD8+ T cell epitopes across the SARS-CoV-2 proteome. Highly networked residues are conserved temporally among circulating variants and sarbecoviruses and disproportionately impair spike pseudotyped lentivirus infectivity when mutated. Evaluation of HLA class I stabilizing activity for 18 globally prevalent alleles identifies CD8+ T cell epitopes within highly networked regions with limited mutational frequencies in circulating SARS-CoV-2 variants and deep-sequenced primary isolates. Moreover, these epitopes elicit demonstrable CD8+ T cell reactivity in convalescent individuals but reduced recognition in recipients of mRNA-based vaccines. These data thereby elucidate key mutationally constrained regions and immunogenic epitopes in the SARS-CoV-2 proteome for a global T-cell-based vaccine against emerging variants and SARS-like coronaviruses.
Asunto(s)
Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito T , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/química , Antígenos HLA/inmunología , Humanos , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismoRESUMEN
BACKGROUND: Understanding immunogenicity and effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines is critical to guide rational use. METHODS: We compared the immunogenicity of mRNA-1273, BNT-162b2, and Ad26.COV2.S in healthy ambulatory adults. We performed an inverse-variance meta-analysis of population-level effectiveness from public health reports inâ >â 40 million individuals. RESULTS: A single dose of either mRNA vaccine yielded comparable antibody and neutralization titers to convalescent individuals. Ad26.COV2.S yielded lower antibody concentrations and frequently undetectable neutralization titers. Bulk and cytotoxic T-cell responses were higher in mRNA1273 and BNT162b2 than Ad26.COV2.S recipients. Regardless of vaccine, <50% of vaccinees demonstrated CD8+ T-cell responses. Antibody concentrations and neutralization titers increased comparably after the first dose of either vaccine, and further in recipients of a second dose. Prior infection was associated with high antibody concentrations and neutralization even after a single dose and regardless of vaccine. Neutralization of Beta, Gamma, and Delta strains were poorer regardless of vaccine. In meta-analysis, relative to mRNA1273 the effectiveness of BNT162b2 was lower against infection and hospitalization, and Ad26COV2.S was lower against infection, hospitalization, and death. CONCLUSIONS: Variation in the immunogenicity correlates with variable effectiveness of the 3 vaccines deployed in the United States.
Asunto(s)
Ad26COVS1 , COVID-19 , Vacuna nCoV-2019 mRNA-1273 , Adulto , Vacuna BNT162 , COVID-19/prevención & control , Vacunas contra la COVID-19 , Humanos , Inmunogenicidad Vacunal , SARS-CoV-2/genética , Vacunas Sintéticas , Vacunas de ARNmRESUMEN
The development of an effective human immunodeficiency virus (HIV) cure is a critical global health priority. A major obstacle to this effort is the establishment of a latent reservoir of HIV infected cells, which necessitates lifelong therapy, causing both logistical and adherence burdens for infected individuals. However, in a subset of these individuals, cytotoxic T lymphocytes (CTLs) can durably suppress viral outgrowth in the absence of therapy, providing a path towards a viable HIV cure. In this review, we discuss the emerging role that CTLs have in HIV cure efforts, with particular emphasis on epitope specificity. Recent studies have demonstrated that successful in vivo containment of the virus is rooted in the specific targeting of fitness-constrained, mutation-resistant regions of the HIV proteome. We highlight these new insights, providing context with previous observations in HIV and other models of viral control, and delineate their translation into a therapeutic vaccine.
Asunto(s)
Epítopos de Linfocito T/inmunología , Infecciones por VIH/inmunología , VIH-1/fisiología , Linfocitos T Citotóxicos/inmunología , Vacunas contra el SIDA/genética , Vacunas contra el SIDA/inmunología , Animales , Epítopos de Linfocito T/genética , Infecciones por VIH/terapia , Infecciones por VIH/virología , VIH-1/genética , HumanosRESUMEN
Immunogenetic studies have shown that specific HLA-B residues (67, 70, 97, and 156) mediate the impact of HLA class I on HIV infection, but the molecular basis is not well understood. Here we evaluate the function of these residues within the protective HLA-B∗5701 allele. While mutation of Met67, Ser70, and Leu156 disrupt CD8+ T cell recognition, substitution of Val97 had no significant impact. Thermal denaturation of HLA-B∗5701-peptide complexes revealed that Met67 and Leu156 maintain HLA-peptide stability, while Ser70 and Leu156 facilitate T cell receptor (TCR) interactions. Analyses of existing structures and structural models suggested that Val97 mediates HLA-peptide binding to inhibitory KIR3DL1 molecules, which was confirmed by experimental assays. These data thereby demonstrate that the genetic basis by which host immunity impacts HIV outcomes occurs by modulating HLA-B-peptide stability and conformation for interaction with TCR and killer immunoglobulin receptor (KIR) molecules. Moreover, they indicate a key role for epitope specificity and HLA-KIR interactions to HIV control.
Asunto(s)
Antígenos HLA-B , Unión Proteica , Receptores de Antígenos de Linfocitos T , Humanos , Antígenos HLA-B/química , Antígenos HLA-B/metabolismo , Antígenos HLA-B/genética , Antígenos HLA-B/inmunología , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores de Antígenos de Linfocitos T/química , Receptores de Antígenos de Linfocitos T/inmunología , VIH-1/inmunología , VIH-1/metabolismo , Infecciones por VIH/inmunología , Infecciones por VIH/virología , Modelos Moleculares , Receptores KIR3DL1/metabolismo , Receptores KIR3DL1/química , Receptores KIR3DL1/genética , Péptidos/química , Péptidos/metabolismo , Sitios de Unión , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Polimorfismo Genético , Estabilidad ProteicaRESUMEN
Licensed COVID-19 vaccines ameliorate viral infection by inducing production of neutralizing antibodies that bind the SARS-CoV-2 Spike protein and inhibit viral cellular entry. However, the clinical effectiveness of these vaccines is transitory as viral variants escape antibody neutralization. Effective vaccines that solely rely upon a T cell response to combat SARS-CoV-2 infection could be transformational because they can utilize highly conserved short pan-variant peptide epitopes, but a mRNA-LNP T cell vaccine has not been shown to provide effective anti-SARS-CoV-2 prophylaxis. Here we show a mRNA-LNP vaccine (MIT-T-COVID) based on highly conserved short peptide epitopes activates CD8+ and CD4+ T cell responses that attenuate morbidity and prevent mortality in HLA-A*02:01 transgenic mice infected with SARS-CoV-2 Beta (B.1.351). We found CD8+ T cells in mice immunized with MIT-T-COVID vaccine significantly increased from 1.1% to 24.0% of total pulmonary nucleated cells prior to and at 7 days post infection (dpi), respectively, indicating dynamic recruitment of circulating specific T cells into the infected lungs. Mice immunized with MIT-T-COVID had 2.8 (2 dpi) and 3.3 (7 dpi) times more lung infiltrating CD8+ T cells than unimmunized mice. Mice immunized with MIT-T-COVID had 17.4 times more lung infiltrating CD4+ T cells than unimmunized mice (7 dpi). The undetectable specific antibody response in MIT-T-COVID-immunized mice demonstrates specific T cell responses alone can effectively attenuate the pathogenesis of SARS-CoV-2 infection. Our results suggest further study is merited for pan-variant T cell vaccines, including for individuals that cannot produce neutralizing antibodies or to help mitigate Long COVID.
Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Humanos , Ratones Transgénicos , Linfocitos T CD8-positivos , Vacunas contra la COVID-19 , COVID-19/prevención & control , Síndrome Post Agudo de COVID-19 , Anticuerpos Neutralizantes , Epítopos , ARN MensajeroRESUMEN
Non-suppressible HIV-1 viremia (NSV) can occur in persons with HIV despite adherence to combination antiretroviral therapy (ART) and in the absence of significant drug resistance. Here, we show that plasma NSV sequences are comprised primarily of large clones without evidence of viral evolution over time. We defined proviruses that contribute to plasma viremia as "producer", and those that did not as "non-producer". Compared to ART-suppressed individuals, NSV participants had a significantly larger producer reservoir. Producer proviruses were enriched in chromosome 19 and in proximity to the activating H3K36me3 epigenetic mark. CD4+ cells from NSV participants demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, NSV participants showed no elevation in HIV-specific CD8+ cell responses and producer proviruses were enriched for HLA escape mutations. We identified critical host and viral mediators of NSV that represent potential targets to disrupt HIV persistence and promote viral silencing.
RESUMEN
Non-suppressible HIV-1 viremia (NSV) is defined as persistent low-level viremia on antiretroviral therapy (ART) without evidence of ART non-adherence or significant drug resistance. Unraveling the mechanisms behind NSV would broaden our understanding of HIV-1 persistence. Here we analyzed plasma virus sequences in eight ART-treated individuals with NSV (88% male) and show that they are composed of large clones without evidence of viral evolution over time in those with longitudinal samples. We defined proviruses that match plasma HIV-1 RNA sequences as 'producer proviruses', and those that did not as 'non-producer proviruses'. Non-suppressible viremia arose from expanded clones of producer proviruses that were significantly larger than the genome-intact proviral reservoir of ART-suppressed individuals. Integration sites of producer proviruses were enriched in proximity to the activating H3K36me3 epigenetic mark. CD4+ T cells from participants with NSV demonstrated upregulation of anti-apoptotic genes and downregulation of pro-apoptotic and type I/II interferon-related pathways. Furthermore, participants with NSV showed significantly lower HIV-specific CD8+ T cell responses compared with untreated viremic controllers with similar viral loads. We identified potential critical host and viral mediators of NSV that may represent targets to disrupt HIV-1 persistence.
Asunto(s)
Infecciones por VIH , Seropositividad para VIH , VIH-1 , Humanos , Masculino , Femenino , VIH-1/genética , Viremia , Provirus/genética , Provirus/metabolismo , Infecciones por VIH/tratamiento farmacológico , Linfocitos T CD4-Positivos , ARN Viral , Carga ViralRESUMEN
The SARS-CoV-2 Omicron variant (B.1.1.529) contains mutations that mediate escape from infection and vaccine-induced antibody responses, although the extent to which these substitutions in spike and non-spike proteins affect T cell recognition is unknown. Here we show that T cell responses in individuals with prior infection, vaccination, both prior infection and vaccination, and boosted vaccination are largely preserved to Omicron spike and non-spike proteins. However, we also identify a subset of individuals (âË»21%) with a >50% reduction in T cell reactivity to the Omicron spike. Evaluation of functional CD4 + and CD8 + memory T cell responses confirmed these findings and reveal that reduced recognition to Omicron spike is primarily observed within the CD8 + T cell compartment. Booster vaccination substantially enhanced T cell responses to Omicron spike. In contrast to neutralizing immunity, these findings suggest preservation of T cell responses to the Omicron variant, although with reduced reactivity in some individuals.
RESUMEN
Defining factors that govern CD8+ T cell immunodominance is critical for the rational design of vaccines for viral pathogens. Here, we assess the contribution of human leukocyte antigen (HLA) class-I-peptide stability for 186 optimal HIV epitopes across 18 HLA alleles using transporter associated with antigen processing (TAP)-deficient mono-allelic HLA-expressing cell lines. We find that immunodominant HIV epitopes increase surface stabilization of HLA class-I molecules in comparison to subdominant epitopes. HLA class-I-peptide stability is also strongly correlated with overall immunodominance hierarchies, particularly for epitopes from high-abundance proteins (e.g., Gag). Moreover, HLA alleles associated with HIV protection are preferentially stabilized by epitopes derived from topologically important viral regions at a greater frequency than neutral and risk alleles. These findings indicate that relative stabilization of HLA class-I is a key factor for CD8+ T cell epitope immunodominance hierarchies, with implications for HIV control and the design of T-cell-based vaccines.
Asunto(s)
Linfocitos T CD8-positivos/inmunología , Infecciones por VIH/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Epítopos Inmunodominantes/inmunología , Péptidos/inmunología , Alelos , Femenino , Células HEK293 , Humanos , Desnaturalización Proteica , Estabilidad Proteica , Propiedades de SuperficieRESUMEN
BACKGROUND: Understanding immunogenicity and effectiveness of SARS-CoV-2 vaccines is critical to guide rational use. METHODS: We compared the immunogenicity of mRNA-1273, BNT-162b2 or Ad26.COV2.S in ambulatory adults in Massachusetts, USA. To correlate immunogenicity with effectiveness of the three vaccines, we performed an inverse-variance meta-analysis of population level effectiveness from public health reports in >40 million individuals. RESULTS: A single dose of either mRNA vaccine yielded comparable antibody and neutralization titers to convalescent individuals. Ad26.COV2.S yielded lower antibody concentrations and frequently negative neutralization titers. Bulk and cytotoxic T-cell responses were higher in mRNA1273 and BNT162b2 than Ad26.COV2.S recipients, and <50% of vaccinees demonstrate CD8+ T-cell responses to spike peptides. Antibody concentrations and neutralization titers increased comparably after the first dose of either vaccine, and further in recipients of a second dose. Prior infection was associated with high antibody concentrations and neutralization even after a single dose and regardless of vaccine. Neutralization of beta, gamma and delta strains were poorer regardless of vaccine. Relative to mRNA1273, the effectiveness of BNT162b2 was lower against infection and hospitalization; and Ad26COV2.S was lower against infection, hospitalization and death. CONCLUSIONS: Variation in the immunogenicity correlates with variable effectiveness of the three FDA EUA vaccines deployed in the USA.