Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Cell Mol Med ; 27(6): 737-762, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36840363

RESUMEN

In recent years, drug manufacturers and researchers have begun to consider the nanobiotechnology approach to improve the drug delivery system for tumour and cancer diseases. In this article, we review current strategies to improve tumour and cancer drug delivery, which mainly focuses on sustaining biocompatibility, biodistribution, and active targeting. The conventional therapy using cornerstone drugs such as fludarabine, cisplatin etoposide, and paclitaxel has its own challenges especially not being able to discriminate between tumour versus normal cells which eventually led to toxicity and side effects in the patients. In contrast to the conventional approach, nanoparticle-based drug delivery provides target-specific delivery and controlled release of the drug, which provides a better therapeutic window for treatment options by focusing on the eradication of diseased cells via active targeting and sparing normal cells via passive targeting. Additionally, treatment of tumours associated with the brain is hampered by the impermeability of the blood-brain barriers to the drugs, which eventually led to poor survival in the patients. Nanoparticle-based therapy offers superior delivery of drugs to the target by breaching the blood-brain barriers. Herein, we provide an overview of the properties of nanoparticles that are crucial for nanotechnology applications. We address the potential future applications of nanobiotechnology targeting specific or desired areas. In particular, the use of nanomaterials, biostructures, and drug delivery methods for the targeted treatment of tumours and cancer are explored.


Asunto(s)
Antineoplásicos , Nanopartículas , Neoplasias , Humanos , Distribución Tisular , Neoplasias/patología , Sistemas de Liberación de Medicamentos , Antineoplásicos/uso terapéutico , Nanopartículas/química , Nanotecnología
2.
Funct Integr Genomics ; 23(2): 184, 2023 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-37243750

RESUMEN

Circular RNAs (circRNAs) are regulatory elements that are involved in orchestrating gene expression and protein functions and are implicated in various biological processes including cancer. Notably, breast cancer has a significant mortality rate and is one of the most common malignancies in women. CircRNAs have been demonstrated to contribute to the pathogenesis of breast cancer including its initiation, progression, metastasis, and resistance to drugs. By acting as miRNA sponges, circRNAs can indirectly influence gene expression by disrupting miRNA regulation of their target genes, ultimately altering the course of cancer development and progression. Additionally, circRNAs can interact with proteins and modulate their functions including signaling pathways involved in the initiation and development of cancer. Recently, circRNAs can encode peptides that play a role in the pathophysiology of breast cancer and other diseases and their potential as diagnostic biomarkers and therapeutic targets for various cancers including breast cancer. CircRNAs possess biomarkers that differentiate, such as stability, specificity, and sensitivity, and can be detected in several biological specimens such as blood, saliva, and urine. Moreover, circRNAs play an important role in various cellular processes including cell proliferation, differentiation, and apoptosis, all of which are integral factors in the development and progression of cancer. This review synthesizes the functions of circRNAs in breast cancer, scrutinizing their contributions to the onset and evolution of the disease through their interactions with exosomes and cancer-related intracellular pathways. It also delves into the potential use of circRNA as a biomarker and therapeutic target against breast cancer. It discusses various databases and online tools that offer crucial circRNA information and regulatory networks. Lastly, the challenges and prospects of utilizing circRNAs in clinical settings associated with breast cancer are explored.


Asunto(s)
Neoplasias de la Mama , Exosomas , MicroARNs , Humanos , Femenino , ARN Circular/genética , Neoplasias de la Mama/diagnóstico , Neoplasias de la Mama/genética , MicroARNs/genética , Biomarcadores , Exosomas/genética
3.
Mol Cell Biochem ; 477(2): 333-343, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34716861

RESUMEN

MN/CA9 is a cell surface glycoprotein and a tumor-associated antigen. It plays a crucial role in the regulation of cell proliferation and oncogenesis. There is no ideal tumor marker currently available for renal cell carcinoma (RCC) with sufficient sensitivity and specificity. Therefore, we studied MN/CA9 gene expression in the tumor tissue, apparently normal kidney tissue, preoperative blood, and urine samples of patients with RCC. We included thirty cases of renal tumors (26 RCC and 4 benign tumors) in the study. We applied an RT-PCR assay for MN/CA9 gene expression to 26 RCC kidney tumor samples and four benign kidney tumor tissue samples. We also evaluated MN/CA9 gene expression in preoperative blood and urine samples of 15 of these cases. Additionally, thirty-five grossly normal renal tissue samples, including 21 from kidneys with RCC, were also evaluated for gene expression. The RT-PCR analysis revealed that twenty-one out of 26 RCC tissue samples showed MN/CA9 gene expression compared to three out of 35 non-malignant renal tissue samples (p < 0.05). Two out of four benign renal tissue samples also expressed this gene. We also observed MN/CA9 gene expression in nine out of 15 blood samples and four out of 15 urine samples. All patients with urinary MN/CA9 gene expression showed expression in blood and tumor tissue samples. We found a correlation in terms of MN/CA9 expression between blood and tumor tissue samples of RCC patients as those who exhibit MN/CA9 expression in blood were also positive at the tumor tissue levels. The difference in MN/CA9 gene expression in tumor tissue, blood, and urine samples in relation to the stage of the disease, nuclear grade, and histological cell-type was not statistically significant. However, all the three patients who had metastatic RCC had MN/CA9 gene expression in their blood. The existence of a tumor-associated antigen such as MN/CA9 may present a possible target for molecular diagnosis and management of RCC.


Asunto(s)
Antígenos de Neoplasias , Biomarcadores de Tumor , Anhidrasa Carbónica IX , Carcinoma de Células Renales , Regulación Enzimológica de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Neoplasias Renales , Adulto , Anciano , Antígenos de Neoplasias/sangre , Antígenos de Neoplasias/orina , Biomarcadores de Tumor/sangre , Biomarcadores de Tumor/orina , Anhidrasa Carbónica IX/sangre , Anhidrasa Carbónica IX/orina , Carcinoma de Células Renales/sangre , Carcinoma de Células Renales/orina , Femenino , Humanos , Neoplasias Renales/sangre , Neoplasias Renales/orina , Masculino , Persona de Mediana Edad
4.
Mol Biol Rep ; 49(8): 8087-8107, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35543828

RESUMEN

The microbiota has been associated with different cancer and may vary from patient to patient. A specific microbial strain can alter the progression of cancer and therapeutic outcome in response to anti-cancer therapy. The variations in microbiota contributed due to the individual microbiome of the microorganism are responsible for diverse clinical outcomes. The expansion of microbiota subpopulation during dysbiosis can lead to toxin production, inducing inflammation and cancer. The microbiota can be a dual-edged sword because it can be tumor-suppressive or oncogenic in the case of the gut. The transition of cancer cells from early to late-stage also impacts the composition of the microbiota, and this alteration could change the behavior of cancer. Multi-omics platforms derived data from an individual's multi-dimensional data (DNA, mRNA, microRNA, protein, metabolite, microbiota, and microbiome), i.e., individualome, to exploit it for personalized tailored treatment for different cancers in a precise manner. A number of studies suggest the importance of microbiota and its add-in suitability to existing treatment options for different malignancies. Furthermore, in vitro, and in vivo studies and cancer clinical trials suggest that probiotics have driven modulation of gut microbiota and other sites discourage the aggressive behavior and progression of different cancers.


Asunto(s)
Microbioma Gastrointestinal , Neoplasias , Probióticos , Carcinogénesis , Disbiosis , Humanos , Probióticos/uso terapéutico
5.
Mol Cell Biochem ; 476(11): 3911-3922, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34169437

RESUMEN

Human SARS Coronavirus-2 (SARS-CoV-2) has infected more than 170 million people worldwide and resulted in more than 3.5 million deaths so far. The infection causes Coronavirus disease (COVID-19) in people of all age groups, notably diabetic and old age people, at a higher risk of infectivity and fatality. Around 35% of the patients who have died of the disease were diabetic. The infection is associated with weakening immune response, chronic inflammation, and potential direct pancreatic impairment. There seems to be a three-way association of the SARS-CoV-2 infection with diabetes and aging. The COVID-19 infection causes metabolism complications, which may induce diabetes and accelerate aging in healthy individuals. How does diabetes elevate the likelihood of the infection is not clearly understood. we summarize mechanisms of accelerated aging in COVID-19 and diabetes, and the possible correlation of these three diseases. Various drug candidates under different stages of pre-clinical or clinical developments give us hope for the development of COVID-19 therapeutics, but there is no approved drug so far to treat this disease. Here, we explored the potential of anti-diabetic and anti-aging natural compounds for the COVID-19 treatment. We have also reviewed different therapeutic strategies with plant-based natural products that may be used to cure patients infected with SARS-CoV-2 and post-infection syndrome.


Asunto(s)
Envejecimiento/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Diabetes Mellitus/tratamiento farmacológico , SARS-CoV-2/fisiología , Factores de Edad , Animales , Antioxidantes/uso terapéutico , COVID-19/epidemiología , COVID-19/inmunología , Humanos , Hipoglucemiantes/uso terapéutico , Pandemias , Fitoquímicos/uso terapéutico
6.
Mol Cell Biochem ; 476(2): 553-574, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33029696

RESUMEN

Since the first case reports in Wuhan, China, the SARS-CoV-2 has caused a pandemic and took lives of > 8,35,000 people globally. This single-stranded RNA virus uses Angiotensin-converting enzyme 2 (ACE2) as a receptor for entry into the host cell. Overexpression of ACE2 is mainly observed in hypertensive, diabetic and heart patients that make them prone to SARS-CoV-2 infection. Mitigations strategies were opted globally by the governments to minimize transmission of SARS-CoV-2 via the implementation of social distancing norms, wearing the facemasks, and spreading awareness using digital platforms. The lack of an approved drug treatment regimen, and non-availability of a vaccine, collectively posed a challenge for mankind to fight against the SARS-CoV-2 pandemic. In this scenario, repurposing of existing drugs and old treatment options like convalescent plasma therapy can be one of the potential alternatives to treat the disease. The drug repurposing provides a selection of drugs based on the scientific rationale and with a shorter cycle of clinical trials, while plasma isolated from COVID-19 recovered patients can be a good source of neutralizing antibody to provide passive immunity. In this review, we provide in-depth analysis on these two approaches currently opted all around the world to treat COVID-19 patients. For this, we used "Boolean Operators" such as AND, OR & NOT to search relevant research articles/reviews from the PUBMED for the repurposed drugs and the convalescent plasma in the COVID-19 treatment. The repurposed drugs like Chloroquine and Hydroxychloroquine, Tenofovir, Remdesivir, Ribavirin, Darunavir, Oseltamivir, Arbidol (Umifenovir), Favipiravir, Anakinra, and Baricitinib are already being used in clinical trials to treat the COVID-19 patients. These drugs have been approved for a different indication and belong to a diverse category such as anti-malarial/anti-parasitic, anti-retroviral/anti-viral, anti-cancer, or against rheumatoid arthritis. Although, the vaccine would be an ideal option for providing active immunity against the SARS-CoV-2, but considering the current situation, drug repurposing and convalescent plasma therapy and repurposed drugs are the most viable option against SARS-CoV-2.


Asunto(s)
Enzima Convertidora de Angiotensina 2/genética , Tratamiento Farmacológico de COVID-19 , Pandemias , SARS-CoV-2/genética , COVID-19/genética , COVID-19/terapia , COVID-19/virología , China , Cloroquina/uso terapéutico , Reposicionamiento de Medicamentos/métodos , Humanos , Inmunización Pasiva/métodos , SARS-CoV-2/patogenicidad , Sueroterapia para COVID-19
7.
Mol Cancer ; 17(1): 54, 2018 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-29455652

RESUMEN

Esophageal cancer is one of the most common types of cancer, which is a leading cause of cancer-related death worldwide. Based on histological behavior, it is mainly of two types (i) Esophageal squamous cell carcinoma (ESCC), and (ii) esophageal adenocarcinoma (EAD or EAC). In astronomically immense majority of malignancies, receptor tyrosine kinases (RTKs) have been kenned to play a consequential role in cellular proliferation, migration, and metastasis of the cells. The post-translational modifications (PTMs) including phosphorylation of tyrosine (pY) residue of the tyrosine kinase (TK) domain have been exploited for treatment in different malignancies. Lung cancer where pY residues of EGFR have been exploited for treatment purpose in lung adenocarcinoma patients, but we do not have such kind of felicitously studied and catalogued data in ESCC patients. Thus, the goal of this review is to summarize the studies carried out on ESCC to explore the role of RTKs, tyrosine kinase inhibitors, and their pertinence and consequentiality for the treatment of ESCC patients.


Asunto(s)
Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Regulación Neoplásica de la Expresión Génica , Proteínas Tirosina Quinasas Receptoras/genética , Proteínas Tirosina Quinasas Receptoras/metabolismo , Transducción de Señal , Carcinoma de Células Escamosas de Esófago/tratamiento farmacológico , Carcinoma de Células Escamosas de Esófago/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Terapia Molecular Dirigida , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Transducción de Señal/efectos de los fármacos
8.
ScientificWorldJournal ; 2015: 325721, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26788548

RESUMEN

The development of esophageal squamous cell carcinoma (ESCC) is poorly understood and the major regulatory molecules involved in the process of tumorigenesis have not yet been identified. We had previously employed a quantitative proteomic approach to identify differentially expressed proteins in ESCC tumors. A total of 238 differentially expressed proteins were identified in that study including S100 calcium binding protein A9 (S100A9) as one of the major downregulated proteins. In the present study, we carried out immunohistochemical validation of S100A9 in a large cohort of ESCC patients to determine the expression and subcellular localization of S100A9 in tumors and adjacent normal esophageal epithelia. Downregulation of S100A9 was observed in 67% (n = 192) of 288 different ESCC tumors, with the most dramatic downregulation observed in the poorly differentiated tumors (99/111). Expression of S100A9 was restricted to the prickle and functional layers of normal esophageal mucosa and localized predominantly in the cytoplasm and nucleus whereas virtually no expression was observed in the tumor and stromal cells. This suggests the important role that S100A9 plays in maintaining the differentiated state of epithelium and suggests that its downregulation may be associated with increased susceptibility to tumor formation.


Asunto(s)
Calgranulina B/metabolismo , Carcinoma de Células Escamosas/metabolismo , Regulación hacia Abajo , Neoplasias Esofágicas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Calgranulina B/genética , Carcinoma de Células Escamosas/patología , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Células Epiteliales/metabolismo , Neoplasias Esofágicas/patología , Humanos , Persona de Mediana Edad
9.
J Vis Exp ; (206)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38682946

RESUMEN

Esophageal cancer (EC) ranks as the 8th most aggressive malignancy, and its treatment remains challenging due to the lack of biomarkers facilitating early detection. EC manifests in two major histological forms - adenocarcinoma (EAD) and squamous cell carcinoma (ESCC) - both exhibiting variations in incidence across geographically distinct populations. High-throughput technologies are transforming the understanding of diseases, including cancer. A significant challenge for the scientific community is dealing with scattered data in the literature. To address this, a simple pipeline is proposed for the analysis of publicly available microarray datasets and the collection of differentially regulated molecules between cancer and normal conditions. The pipeline can serve as a standard approach for differential gene expression analysis, identifying genes differentially expressed between cancer and normal tissues or among different cancer subtypes. The pipeline involves several steps, including Data preprocessing (involving quality control and normalization of raw gene expression data to remove technical variations between samples), Differential expression analysis (identifying genes differentially expressed between two or more groups of samples using statistical tests such as t-tests, ANOVA, or linear models), Functional analysis (using bioinformatics tools to identify enriched biological pathways and functions in differentially expressed genes), and Validation (involving validation using independent datasets or experimental methods such as qPCR or immunohistochemistry). Using this pipeline, a collection of differentially expressed molecules (DEMs) can be generated for any type of cancer, including esophageal cancer. This compendium can be utilized to identify potential biomarkers and drug targets for cancer and enhance understanding of the molecular mechanisms underlying the disease. Additionally, population-specific screening of esophageal cancer using this pipeline will help identify specific drug targets for distinct populations, leading to personalized treatments for the disease.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/patología , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patología
10.
Mol Ther Nucleic Acids ; 35(2): 102202, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38846999

RESUMEN

Splicing factor 3b subunit 1 (SF3B1) is the largest subunit and core component of the spliceosome. Inhibition of SF3B1 was associated with an increase in broad intron retention (IR) on most transcripts, suggesting that IR can be used as a marker of spliceosome inhibition in chronic lymphocytic leukemia (CLL) cells. Furthermore, we separately analyzed exonic and intronic mapped reads on annotated RNA-sequencing transcripts obtained from B cells (n = 98 CLL patients) and healthy volunteers (n = 9). We measured intron/exon ratio to use that as a surrogate for alternative RNA splicing (ARS) and found that 66% of CLL-B cell transcripts had significant IR elevation compared with normal B cells (NBCs) and that correlated with mRNA downregulation and low expression levels. Transcripts with the highest IR levels belonged to biological pathways associated with gene expression and RNA splicing. A >2-fold increase of active pSF3B1 was observed in CLL-B cells compared with NBCs. Additionally, when the CLL-B cells were treated with macrolides (pladienolide-B), a significant decrease in pSF3B1, but not total SF3B1 protein, was observed. These findings suggest that IR/ARS is increased in CLL, which is associated with SF3B1 phosphorylation and susceptibility to SF3B1 inhibitors. These data provide additional support to the relevance of ARS in carcinogenesis and evidence of pSF3B1 participation in this process.

11.
Clin Med Insights Endocrinol Diabetes ; 16: 11795514231189073, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37529301

RESUMEN

The COVID-19 pandemic has changed many aspects of people's lives, including not only individual social behavior, healthcare procedures, and altered physiological and pathophysiological responses. As a result, some medical studies may be influenced by one or more hidden factors brought about by the COVID-19 pandemic. Using the literature review method, we are briefly discussing the studies that are confounded by COVID-19 and facemask-induced partiality and how these factors can be further complicated with other confounding variables. Facemask wearing has been reported to produce partiality in studies of ophthalmology (particularly dry eye and related ocular diseases), sleep studies, cognitive studies (such as emotion-recognition accuracy research, etc.), and gender-influenced studies, to mention a few. There is a possibility that some other COVID-19 related influences remain unrecognized in medical research. To account for heterogeneity, current and future studies need to consider the severity of the initial illness (such as diabetes, other endocrine disorders), and COVID-19 infection, the timing of analysis, or the presence of a control group. Face mask-induced influences may confound the results of diabetes studies in many ways.

12.
Adv Protein Chem Struct Biol ; 134: 147-174, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36858733

RESUMEN

Multiple myeloma (MM) is the 2nd most frequently diagnosed blood cancer after non-Hodgkin's lymphoma. The present study aimed to identify the differentially expressed genes (DEGs) between the control and pristimerin-treated MM cell lines. We examined the GSE14011 microarray dataset and screened DEGs with GEO2R statistical tool using the inbuilt limma package. We used a bioinformatics pipeline to identify the differential networks, signaling cascades, and the survival of the hub genes. We implemented two different enrichment analysis including ClueGO and Metacore™, to get accurate annotation for most significant DEGs. We screened the most significant 408 DEGs from the dataset based on p-values and logFC values. Using protein network analysis, we found the genes UBC, HSP90AB1, HSPH1, HSPA1B, HSPA1L, HSPA6, HSPD1, DNAJB1, HSPE1, DNAJC10, BAG3, and DNAJC7 had higher node degree distribution. In contrast, the functional annotation provided that the DEGs were predominantly enriched in B-cell receptor signaling, unfolded protein response, positive regulation of phagocytosis, HSP70, and HSP40-dependent folding, and ubiquitin-proteasomal proteolysis. Using network algorithms, and comparing enrichment analysis, we found the hub genes enriched were INHBE, UBC, HSPA1A, HSP90AB1, IKBKB, and BAG3. These DEGs were further validated with overall survival and gene expression analysis between the tumor and control groups. Finally, pristimerin effects were validated independently in a cell line model consisting of IM9 and U266 MM cells. Pristimerin induced in vitro cytotoxicity in MM cells in a dose-dependent manner. Pristimerin inhibited NF-κB, induced accumulation of ubiquitinated proteins and inhibited HSP60 in the validation of bioinformatics findings, while pristimerin-induced caspase-3 and PARP cleavage confirmed cell death. Taken together, we found that the identified DEGs were strongly associated with the apoptosis induced in MM cell lines due to pristimerin treatment, and combinatorial therapy derived from pristimerin could act as novel anti-myeloma multifunctional agents.


Asunto(s)
Mieloma Múltiple , Transducción de Señal , Algoritmos , Apoptosis , Biología Computacional , Mieloma Múltiple/tratamiento farmacológico , Línea Celular Tumoral , Humanos
13.
Adv Protein Chem Struct Biol ; 131: 177-206, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35871890

RESUMEN

Esophageal squamous cell carcinoma (ESCC) remains a serious concern globally due to many factors that including late diagnosis, lack of an ideal biomarker for diagnosis and prognosis, and high rate of mortality. In this study, we aimed to identify the essential dysregulated genes and molecular signatures associated with the progression and development of ESCC. The dataset with 15 ESCCs and the 15 adjacent normal tissue samples from the surrounding histopathologically tumor-free mucosa was selected. We applied bioinformatics pipelines including various topological parameters from MCODE, CytoNCA, and cytoHubba to prioritize the most significantly associated DEGs with ESCC. We performed functional enrichment annotation for the identified DEGs using DAVID and MetaCore™ GeneGo platforms. Furthermore, we validated the essential core genes in TCGA and GTEx datasets between the normal mucosa and ESCC for their expression levels. These DEGs were primarily enriched in positive regulation of transferase activity, negative regulation of organelle organization, cell cycle mitosis/S-phase transition, spindle organization/assembly, development, and regulation of angiogenesis. Subsequently, the DEGs were associated with the pathways such as oocyte meiosis, cell cycle, and DNA replication. Our study identified the eight-core genes (AURKA, AURKB, MCM2, CDC20, TPX2, PLK1, FOXM1, and MCM7) that are highly expressed among the ESCC, and TCGA dataset. The multigene comparison and principal component analysis resulted in elevated signals for the AURKA, MCM2, CDC20, TPX2, PLK1, and FOXM1. Overall, our study reported GO profiles and molecular signatures that might help researchers to grasp the pathological mechanisms underlying ESCC development and eventually provide novel therapeutic and diagnostic strategies.


Asunto(s)
Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Aurora Quinasa A/genética , Aurora Quinasa A/metabolismo , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Biología Computacional/métodos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Perfilación de la Expresión Génica/métodos , Regulación Neoplásica de la Expresión Génica , Humanos , Transcriptoma/genética
14.
Med Oncol ; 39(11): 173, 2022 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-35972700

RESUMEN

RNA splicing is the fundamental process that brings diversity at the transcriptome and proteome levels. The spliceosome complex regulates minor and major processes of RNA splicing. Aberrant regulation is often associated with different diseases, including diabetes, stroke, hypertension, and cancer. In the majority of cancers, dysregulated alternative RNA splicing (ARS) events directly affect tumor progression, invasiveness, and often lead to poor survival of the patients. Alike the rest of the gastrointestinal malignancies, in hepatocellular carcinoma (HCC), which alone contributes to ~ 75% of the liver cancers, a large number of ARS events have been observed, including intron retention, exon skipping, presence of alternative 3'-splice site (3'SS), and alternative 5'-splice site (5'SS). These events are reported in spliceosome and non-spliceosome complexes genes. Molecules such as MCL1, Bcl-X, and BCL2 in different isoforms can behave as anti-apoptotic or pro-apoptotic, making the spliceosome complex a dual-edged sword. The anti-apoptotic isoforms of such molecules bring in resistance to chemotherapy or cornerstone drugs. However, in contrast, multiple malignant tumors, including HCC that target the pro-apoptotic favoring isoforms/variants favor apoptotic induction and make chemotherapy effective. Herein, we discuss different splicing events, aberrations, and antisense oligonucleotides (ASOs) in modulating RNA splicing in HCC tumorigenesis with a possible therapeutic outcome.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Empalme Alternativo , Carcinoma Hepatocelular/genética , Humanos , Intrones , Neoplasias Hepáticas/genética , Isoformas de Proteínas/genética , Sitios de Empalme de ARN
15.
J Exp Clin Cancer Res ; 41(1): 258, 2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36002889

RESUMEN

BACKGROUND: Pancreatic cancer is one of the most difficult cancers to detect early and most patients die from complications arising due to distant organ metastases. The lack of bona fide early biomarkers is one of the primary reasons for late diagnosis of pancreatic cancer. It is a multifactorial disease and warrants a novel approach to identify early biomarkers. METHODS: In order to characterize the proteome, Extracellular vesicles (EVs) isolated from different in vitro conditions mimicking tumor-microenvironment interactions between pancreatic cancer epithelial and stromal cells were analyzed using high throughput mass spectrometry. The biological activity of the secreted EVome was analyzed by investigating changes in distant organ metastases and associated early changes in the microbiome. Candidate biomarkers (KIF5B, SFRP2, LOXL2, and MMP3) were selected and validated on a mouse-human hybrid Tissue Microarray (TMA) that was specifically generated for this study. Additionally, a human TMA was used to analyze the expression of KIF5B and SFRP2 in progressive stages of pancreatic cancer. RESULTS: The EVome of co-cultured epithelial and stromal cells is different from individual cells with distinct protein compositions. EVs secreted from stromal and cancer cells cultures could not induce significant changes in Pre-Metastatic Niche (PMN) modulation, which was assessed by changes in the distant organ metastases. However, they did induce significant changes in the early microbiome, as indicated by differences in α and ß-diversities. KIF5B and SFRP2 show promise for early detection and investigation in progressive pancreatic cancer. These markers are expressed in all stages of pancreatic cancer such as low grade PanINs, advanced cancer, and in liver and soft tissue metastases. CONCLUSIONS: Proteomic characterization of EVs derived from mimicking conditions of epithelial and stromal cells in the tumor-microenvironment resulted in the identification of several proteins, some for the first time in EVs. These secreted EVs cannot induce changes in distant organ metastases in in vivo models of EV education, but modulate changes in the early murine microbiome. Among all the proteins that were analyzed (MMP3, KIF5B, SFRP2, and LOXL2), KIF5B and SFRP2 show promise as bona fide early pancreatic cancer biomarkers expressed in progressive stages of pancreatic cancer.


Asunto(s)
Cinesinas , Proteínas de la Membrana , Neoplasias Pancreáticas , Microambiente Tumoral , Animales , Biomarcadores de Tumor/metabolismo , Humanos , Metaloproteinasa 3 de la Matriz , Ratones , Neoplasias Pancreáticas/patología , Proteoma/metabolismo , Proteómica/métodos , Neoplasias Pancreáticas
16.
Biomark Res ; 9(1): 31, 2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958005

RESUMEN

Reversion of tumor to a normal differentiated cell once considered a dream is now at the brink of becoming a reality. Different layers of molecules/events such as microRNAs, transcription factors, alternative RNA splicing, post-transcriptional, post-translational modifications, availability of proteomics, genomics editing tools, and chemical biology approaches gave hope to manipulation of cancer cells reversion to a normal cell phenotype as evidences are subtle but definitive. Regardless of the advancement, there is a long way to go, as customized techniques are required to be fine-tuned with precision to attain more insights into tumor reversion. Tumor regression models using available genome-editing methods, followed by in vitro and in vivo proteomics profiling techniques show early evidence. This review summarizes tumor reversion developments, present issues, and unaddressed challenges that remained in the uncharted territory to modulate cellular machinery for tumor reversion towards therapeutic purposes successfully. Ongoing research reaffirms the potential promises of understanding the mechanism of tumor reversion and required refinement that is warranted in vitro and in vivo models of tumor reversion, and the potential translation of these into cancer therapy. Furthermore, therapeutic compounds were reported to induce phenotypic changes in cancer cells into normal cells, which will contribute in understanding the mechanism of tumor reversion. Altogether, the efforts collectively suggest that tumor reversion will likely reveal a new wave of therapeutic discoveries that will significantly impact clinical practice in cancer therapy.

20.
Sci Rep ; 8(1): 12715, 2018 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-30143675

RESUMEN

Esophageal cancer (EC) is the eighth most aggressive malignancy and its treatment remains a challenge due to the lack of biomarkers that can facilitate early detection. EC is identified in two major histological forms namely - Adenocarcinoma (EAC) and Squamous cell carcinoma (ESCC), each showing differences in the incidence among populations that are geographically separated. Hence the detection of potential drug target and biomarkers demands a population-centric understanding of the molecular and cellular mechanisms of EC. To provide an adequate impetus to the biomarker discovery for ESCC, which is the most prevalent esophageal cancer worldwide, here we have developed ESCC ATLAS, a manually curated database that integrates genetic, epigenetic, transcriptomic, and proteomic ESCC-related genes from the published literature. It consists of 3475 genes associated to molecular signatures such as, altered transcription (2600), altered translation (560), contain copy number variation/structural variations (233), SNPs (102), altered DNA methylation (82), Histone modifications (16) and miRNA based regulation (261). We provide a user-friendly web interface ( http://www.esccatlas.org , freely accessible for academic, non-profit users) that facilitates the exploration and the analysis of genes among different populations. We anticipate it to be a valuable resource for the population specific investigation and biomarker discovery for ESCC.


Asunto(s)
Biomarcadores de Tumor , Bases de Datos Genéticas , Neoplasias Esofágicas , Carcinoma de Células Escamosas de Esófago , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas de Esófago/genética , Carcinoma de Células Escamosas de Esófago/metabolismo , Carcinoma de Células Escamosas de Esófago/patología , Femenino , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA