Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biotechnol Bioeng ; 114(3): 576-588, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27642072

RESUMEN

Contamination by the parvovirus minute virus of mice (MVM) remains a challenge in Chinese hamster ovary (CHO) biopharmaceutical production processes. Although infrequent, infection of a bioreactor can be catastrophic for a manufacturer, can impact patient drug supply and safety, and can have regulatory implications. We evaluated engineering a CHO parental cell line (CHOZN® GS-/- ) to create a new host cell line that is resistant to MVM infection by modifying the major receptors used by the virus to enter cells. Attachment to a cell surface receptor is a key first step in the infection cycle for many viruses. While the exact functional receptor for MVM binding to CHO cell surface is unknown, sialic acid on the cell surface has been implicated. In this work, we used the zinc finger nuclease gene editing technology to validate the role of sialic acid on the cell surface in the binding and internalization of the MVM virus. Our approach was to systematically mutate genes involved in cell surface sialylation and then challenge each cell line for their ability to resist viral entry and propagation. To test the importance of sialylation, the following genes were knocked out: the CMP-sialic acid transporter, solute carrier family 35A1 (Slc35a1), the core 1-ß-1,3-galactosyltransferase-1 specific chaperone (Cosmc), and mannosyl (α-1,3-)-glycoprotein ß-1,2-N-acetylglucosaminyltransferase (Mgat1) as well as members of the sialyltransferase family. Slc35a1 is responsible for transporting sialic acid into the Golgi. Knocking out function of this gene in a cell results in asialylated glycan structures, thus eliminating the ability of MVM to bind to and enter the cell. The complete absence of sialic acid on the Slc35a1 knockout cell line led to complete resistance to MVM infection. The Cosmc and Mgat1 knockouts also show significant inhibition of infection likely due to their effect on decreasing cell surface sialic acid. Previously in vitro glycan analysis has been used to elucidate the precise sialic acid structures required for MVM binding and internalization. In this work, we performed the sequential knockout of various sialyltransferases that add terminal sialic acid to glycans with different linkage specificities. Cell lines with modifications of the various genes included in this study resulted in varying effects on MVM infection expanding on the knowledge of MVM receptors. MVM resistant host cell lines were also tested for the production of model recombinant proteins. Our data demonstrate that resistance against the MVM virus can be incorporated into CHO production cell lines, adding another level of defense against the devastating financial consequences of MVM infection without compromising recombinant protein yield or quality. Biotechnol. Bioeng. 2017;114: 576-588. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Células CHO , Resistencia a la Enfermedad/genética , Ingeniería Genética/métodos , Interacciones Huésped-Patógeno/genética , Virus Diminuto del Ratón/inmunología , Ácido N-Acetilneuramínico/genética , Animales , Cricetinae , Cricetulus , Interacciones Huésped-Patógeno/inmunología , Modelos Biológicos , Ácido N-Acetilneuramínico/inmunología , Ácido N-Acetilneuramínico/metabolismo
2.
Antimicrob Agents Chemother ; 58(8): 4894-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24841268

RESUMEN

We have previously shown that SSYA10-001 blocks severe acute respiratory syndrome coronavirus (SARS-CoV) replication by inhibiting SARS-CoV helicase (nsp13). Here, we show that SSYA10-001 also inhibits replication of two other coronaviruses, mouse hepatitis virus (MHV) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV). A putative binding pocket for SSYA10-001 was identified and shown to be similar in SARS-CoV, MERS-CoV, and MHV helicases. These studies show that it is possible to target multiple coronaviruses through broad-spectrum inhibitors.


Asunto(s)
Antivirales/farmacología , ADN Helicasas/antagonistas & inhibidores , Coronavirus del Síndrome Respiratorio de Oriente Medio/efectos de los fármacos , Virus de la Hepatitis Murina/efectos de los fármacos , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/efectos de los fármacos , Triazoles/farmacología , Proteínas Virales/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Antivirales/química , Sitios de Unión , Línea Celular , Chlorocebus aethiops , ADN Helicasas/química , Relación Dosis-Respuesta a Droga , Fibroblastos/efectos de los fármacos , Fibroblastos/patología , Fibroblastos/virología , Humanos , Concentración 50 Inhibidora , Ratones , Coronavirus del Síndrome Respiratorio de Oriente Medio/fisiología , Simulación del Acoplamiento Molecular , Datos de Secuencia Molecular , Virus de la Hepatitis Murina/fisiología , Unión Proteica , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/fisiología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Triazoles/química , Células Vero , Proteínas Virales/química , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA