Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochem J ; 473(18): 2813-29, 2016 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-27422783

RESUMEN

Mammalian glutamate dehydrogenase (GDH), a nuclear-encoded enzyme central to cellular metabolism, is among the most abundant mitochondrial proteins (constituting up to 10% of matrix proteins). To attain such high levels, GDH depends on very efficient mitochondrial targeting that, for human isoenzymes hGDH1 and hGDH2, is mediated by an unusually long cleavable presequence (N53). Here, we studied the mitochondrial transport of these proteins using isolated yeast mitochondria and human cell lines. We found that both hGDHs were very rapidly imported and processed in isolated mitochondria, with their presequences (N53) alone being capable of directing non-mitochondrial proteins into mitochondria. These presequences were predicted to form two α helices (α1: N 1-10; α2: N 16-32) separated by loops. Selective deletion of the α1 helix abolished the mitochondrial import of hGDHs. While the α1 helix alone had a very weak hGDH mitochondrial import capacity, it could direct efficiently non-mitochondrial proteins into mitochondria. In contrast, the α2 helix had no autonomous mitochondrial-targeting capacity. A peptide consisting of α1 and α2 helices without intervening sequences had GDH transport efficiency comparable with that of N53. Mutagenesis of the cleavage site blocked the intra-mitochondrial processing of hGDHs, but did not affect their mitochondrial import. Replacement of all three positively charged N-terminal residues (Arg3, Lys7 and Arg13) by Ala abolished import. We conclude that the synergistic interaction of helices α1 and α2 is crucial for the highly efficient import of hGDHs into mitochondria.


Asunto(s)
Glutamato Deshidrogenasa/metabolismo , Mitocondrias/enzimología , Clonación Molecular , Glutamato Deshidrogenasa/genética , Transporte de Proteínas , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/metabolismo
2.
FEBS J ; 280(20): 4960-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23937629

RESUMEN

The discovery of the mitochondrial intermembrane space assembly (MIA) pathway was followed by studies that focused mainly on the typical small substrates of this disulfide relay system and the interactions between its two central partners: the oxidoreductase Mia40 and the FAD-protein Erv1. Recent studies have revealed that more complex proteins utilize this pathway, including Mia40 itself. In the present study, we dissect the Mia40 biogenesis in distinct stages, supporting a kinetically coordinated sequence of events, starting with (a) import and insertion through the Tim23 translocon, followed by (b) folding of the core of imported Mia40 assisted by the endogenous Mia40 and (c) final interaction with Erv1. The interaction with endogenous Mia40 and the subsequent interaction with Erv1 represent kinetically distinguishable steps that rely on completely different determinants. Interaction with Mia40 proceeds very early (within 30 s) and is characterized by no Cys-specificity, an increased tolerance to mutations of the hydrophobic substrate-binding cleft and no apparent dependence on glutathione as a proofreading mechanism. All of these features illustrate a very atypical behaviour for the Mia40 precursor compared to other substrates of the MIA pathway. By contrast, interaction with Erv1 occurs after 5 min of import and relies on a more stringent specificity.


Asunto(s)
Proteínas de Transporte de Membrana Mitocondrial/biosíntesis , Dominio Catalítico , Reductasas del Citocromo/metabolismo , Glutatión/metabolismo , Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidación-Reducción , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Unión Proteica , Pliegue de Proteína , Transporte de Proteínas
3.
J Mol Biol ; 425(3): 594-608, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23207295

RESUMEN

The functional role of unstructured protein domains is an emerging field in the frame of intrinsically disordered proteins. The involvement of intrinsically disordered domains (IDDs) in protein targeting and biogenesis processes in mitochondria is so far not known. Here, we have characterized the structural/dynamic and functional properties of an IDD of the sulfhydryl oxidase ALR (augmenter of liver regeneration) located in the intermembrane space of mitochondria. At variance to the unfolded-to-folded structural transition of several intrinsically disordered proteins, neither substrate recognition events nor redox switch of its shuttle cysteine pair is linked to any such structural change. However, this unstructured domain performs a dual function in two cellular compartments: it acts (i) as a mitochondrial targeting signal in the cytosol and (ii) as a crucial recognition site in the disulfide relay system of intermembrane space. This domain provides an exciting new paradigm for IDDs ensuring two distinct functions that are linked to intracellular organelle targeting.


Asunto(s)
Proteínas/química , Proteínas/metabolismo , Humanos , Espectroscopía de Resonancia Magnética , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Oxidación-Reducción , Conformación Proteica , Saccharomyces cerevisiae/enzimología
4.
ACS Chem Biol ; 7(4): 707-14, 2012 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-22296668

RESUMEN

The interaction of Mia40 with Erv1/ALR is central to the oxidative protein folding in the intermembrane space of mitochondria (IMS) as Erv1/ALR oxidizes reduced Mia40 to restore its functional state. Here we address the role of Mia40 in the import and maturation of Erv1/ALR. The C-terminal FAD-binding domain of Erv1/ALR has an essential role in the import process by creating a transient intermolecular disulfide bond with Mia40. The action of Mia40 is selective for the formation of both intra and intersubunit structural disulfide bonds of Erv1/ALR, but the complete maturation process requires additional binding of FAD. Both of these events must follow a specific sequential order to allow Erv1/ALR to reach the fully functional state, illustrating a new paradigm for protein maturation in the IMS.


Asunto(s)
Reductasas del Citocromo/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Membranas Mitocondriales/metabolismo , Disulfuros , Humanos , Proteínas de Transporte de Membrana Mitocondrial , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro , Pliegue de Proteína , Transporte de Proteínas
5.
Nat Struct Mol Biol ; 16(2): 198-206, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19182799

RESUMEN

MIA40 has a key role in oxidative protein folding in the mitochondrial intermembrane space. We present the solution structure of human MIA40 and its mechanism as a catalyst of oxidative folding. MIA40 has a 66-residue folded domain made of an alpha-helical hairpin core stabilized by two structural disulfides and a rigid N-terminal lid, with a characteristic CPC motif that can donate its disulfide bond to substrates. The CPC active site is solvent-accessible and sits adjacent to a hydrophobic cleft. Its second cysteine (Cys55) is essential in vivo and is crucial for mixed disulfide formation with the substrate. The hydrophobic cleft functions as a substrate binding domain, and mutations of this domain are lethal in vivo and abrogate binding in vitro. MIA40 represents a thioredoxin-unrelated, minimal oxidoreductase, with a facile CPC redox active site that ensures its catalytic function in oxidative folding in mitochondria.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Secuencia de Aminoácidos , Humanos , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Modelos Moleculares , Datos de Secuencia Molecular , Resonancia Magnética Nuclear Biomolecular , Oxidación-Reducción , Conformación Proteica , Pliegue de Proteína , Alineación de Secuencia
6.
J Cell Biol ; 187(7): 1007-22, 2009 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-20026652

RESUMEN

Mia40 imports Cys-containing proteins into the mitochondrial intermembrane space (IMS) by ensuring their Cys-dependent oxidative folding. In this study, we show that the specific Cys of the substrate involved in docking with Mia40 is substrate dependent, the process being guided by an IMS-targeting signal (ITS) present in Mia40 substrates. The ITS is a 9-aa internal peptide that (a) is upstream or downstream of the docking Cys, (b) is sufficient for crossing the outer membrane and for targeting nonmitochondrial proteins, (c) forms an amphipathic helix with crucial hydrophobic residues on the side of the docking Cys and dispensable charged residues on the other side, and (d) fits complementary to the substrate cleft of Mia40 via hydrophobic interactions of micromolar affinity. We rationalize the dual function of Mia40 as a receptor and an oxidase in a two step-specific mechanism: an ITS-guided sliding step orients the substrate noncovalently, followed by docking of the substrate Cys now juxtaposed to pair with the Mia40 active Cys.


Asunto(s)
Mitocondrias/metabolismo , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Pliegue de Proteína , Señales de Clasificación de Proteína , Proteínas de Saccharomyces cerevisiae/metabolismo , Sitios de Unión , Calorimetría , Proteínas Portadoras/metabolismo , Proteínas de Transporte de Catión , Secuencia de Consenso , Proteínas Transportadoras de Cobre , Cisteína/química , Cisteína/metabolismo , Humanos , Proteínas de Transporte de Membrana Mitocondrial/química , Proteínas de Transporte de Membrana Mitocondrial/fisiología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Chaperonas Moleculares , Oxidación-Reducción , Estructura Terciaria de Proteína , Transporte de Proteínas , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/fisiología
7.
Genes Dev ; 20(16): 2293-305, 2006 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-16912278

RESUMEN

Cross-regulatory cascades between hepatic transcription factors have been implicated in the determination of the hepatic phenotype. Analysis of recruitments to regulatory regions and the temporal and spatial expression pattern of the main hepatic regulators during liver development revealed a gradual increase in complexity of autoregulatory and cross-regulatory circuits. Within these circuits we identified a core group of six transcription factors, which regulate the expression of each other and the expression of other downstream hepatic regulators. Changes in the promoter occupancy patterns during development included new recruitments, release, and exchange of specific factors. We also identified promoter and developmental stage-specific dual regulatory functions of certain factors as an important feature of the network. Inactivation of HNF-4alpha in embryonic, but not in adult, liver resulted in the diminished expression of most hepatic factors, demonstrating that the stability of the network correlates with its complexity. The results illustrate the remarkable flexibility of a self-sustaining transcription factor network, built up by complex dominant and redundant regulatory motifs in developing hepatocytes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Hepatocitos/citología , Hepatocitos/metabolismo , Hígado/embriología , Hígado/metabolismo , Factores de Transcripción/metabolismo , Animales , Diferenciación Celular , Inmunoprecipitación de Cromatina , Exones , Femenino , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Hígado/crecimiento & desarrollo , Masculino , Ratones , Regiones Promotoras Genéticas , ARN Mensajero , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Organismos Libres de Patógenos Específicos , Factores de Transcripción/genética
8.
EMBO J ; 24(14): 2624-33, 2005 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-15973435

RESUMEN

SHP (small heterodimer partner) is an important component of the feedback regulatory cascade, which controls the conversion of cholesterol to bile acids. In order to identify the bona fide molecular targets of SHP, we performed global gene expression profiling combined with chromatin immunoprecipitation assays in transgenic mice constitutively expressing SHP in the liver. We demonstrate that SHP affects genes involved in diverse biological pathways, and in particular, several key genes involved in consecutive steps of cholesterol degradation, bile acid conjugation, transport and lipogenic pathways. Sustained expression of SHP leads to the depletion of hepatic bile acid pool and a concomitant accumulation of triglycerides in the liver. The mechanism responsible for this phenotype includes SHP-mediated direct repression of downstream target genes and the bile acid sensor FXRalpha, and an indirect activation of PPARgamma and SREBP-1c genes. We present evidence for the role of altered chromatin configurations in defining distinct gene-specific mechanisms by which SHP mediates differential transcriptional repression. The multiplicity of genes under its control suggests that SHP is a pleiotropic regulator of diverse metabolic pathways.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Hígado/metabolismo , Receptores Citoplasmáticos y Nucleares/fisiología , Animales , Ratones , Ratones Transgénicos , ARN Mensajero/metabolismo , Receptores Citoplasmáticos y Nucleares/genética , Proteínas Represoras/genética , Proteínas Represoras/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA