Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 291(29): 15143-55, 2016 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-27226620

RESUMEN

Linker histone H1 is among the most abundant components of chromatin. H1 has profound effects on chromosome architecture. H1 also helps to tether DNA- and histone-modifying enzymes to chromatin. Metazoan linker histones have a conserved tripartite structure comprising N-terminal, globular, and long, unstructured C-terminal domains. Here we utilize truncated Drosophila H1 polypeptides in vitro and H1 mutant transgenes in vivo to interrogate the roles of these domains in multiple biochemical and biological activities of H1. We demonstrate that the globular domain and the proximal part of the C-terminal domain are essential for H1 deposition into chromosomes and for the stability of H1-chromatin binding. The two domains are also essential for fly viability and the establishment of a normal polytene chromosome structure. Additionally, through interaction with the heterochromatin-specific histone H3 Lys-9 methyltransferase Su(var)3-9, the H1 C-terminal domain makes important contributions to formation and H3K9 methylation of heterochromatin as well as silencing of transposons in heterochromatin. Surprisingly, the N-terminal domain does not appear to be required for any of these functions. However, it is involved in the formation of a single chromocenter in polytene chromosomes. In summary, we have discovered that linker histone H1, similar to core histones, exerts its multiple biological functions through independent, biochemically separable activities of its individual structural domains.


Asunto(s)
Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Histonas/química , Histonas/metabolismo , Animales , Animales Modificados Genéticamente , Cromatina/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Femenino , Genes de Insecto , Histonas/genética , Técnicas In Vitro , Masculino , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Unión Proteica , Dominios Proteicos , Interferencia de ARN
2.
Trends Biochem Sci ; 31(9): 485-7, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16876419

RESUMEN

In Drosophila, the RNA interference (RNAi) genes participate in Polycomb (Pc)-mediated transgene silencing. Recently, the involvement of the RNAi genes in Pc silencing, pairing-sensitive silencing and long-range contacts among Pc-associated sequences has been explored. These Pc-associated sequences are involved with the control of the proper expression of developmental HOX genes.


Asunto(s)
Emparejamiento Cromosómico , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Proteínas/metabolismo , Interferencia de ARN , Animales , Proteínas Argonautas , Núcleo Celular/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Modelos Genéticos , Complejo Represivo Polycomb 1 , Complejo Silenciador Inducido por ARN
3.
Curr Top Microbiol Immunol ; 320: 37-75, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18268839

RESUMEN

RNA interference (RNAi) is the technique employing double-stranded RNA to target the destruction of homologous messenger RNAs. It has gained wide usage in genetics. While having the potential for many practical applications, it is a reflection of a much broader spectrum of small RNA-mediated processes in the cell. The RNAi machinery was originally perceived as a defense mechanism against viruses and transposons. While this is certainly true, small RNAs have now been implicated in many other aspects of cell biology. Here we review the current knowledge of the biochemistry of RNAi in Drosophila and the involvement of small RNAs in RNAi, transposon silencing, virus defense, transgene silencing, pairing-sensitive silencing, telomere function, chromatin insulator activity, nucleolar stability, and heterochromatin formation. The discovery of the role of RNA molecules in the degradation of mRNA transcripts leading to decreased gene expression resulted in a paradigm shift in the field of molecular biology. Transgene silencing was first discovered in plant cells (Matzke et al. 1989; van der Krol et al. 1990; Napoli et al. 1990) and can occur on both the transcriptional and posttranscriptional levels, but both involve short RNA moieties in their mechanism. RNA interference (RNAi) is a type of gene silencing mechanism in which a double-stranded RNA (dsRNA) molecule directs the specific degradation of the corresponding mRNA (target RNA). The technique of RNAi was first discovered in Caenorhabditis elegans in 1994 (Guo and Kemphues 1994). Later the active component was found to be a dsRNA (Fire et al. 1998). In subsequent years, it has been found to occur in diverse eukaryotes


Asunto(s)
Drosophila/genética , Interferencia de ARN , Animales , Nucléolo Celular/química , Nucléolo Celular/metabolismo , Reparación del ADN , Elementos Transponibles de ADN/genética , Drosophila/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Heterocromatina/genética , ARN Interferente Pequeño/química , ARN Interferente Pequeño/metabolismo , Complejo Silenciador Inducido por ARN/química , Complejo Silenciador Inducido por ARN/metabolismo , Telómero/genética
4.
Curr Biol ; 14(18): R759-61, 2004 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-15380087

RESUMEN

Mutation of the multi-KH domain protein DPP1, which has single-stranded nucleic acid binding activity, suppresses heterochromatin-mediated silencing in Drosophila; it also disrupts the modification of histone H3 at lysine 9, and association of heterochromatin protein 1 on the heterochromatic regions, suggesting a role for DDP1 in heterochromatin formation.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Heterocromatina/genética , Histonas/metabolismo , Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Drosophila/fisiología , Silenciador del Gen/fisiología , Heterocromatina/fisiología , Metilación , Modelos Biológicos , Mutación/genética , Interferencia de ARN
5.
Sci Rep ; 6: 34354, 2016 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-27687115

RESUMEN

Metazoan linker histones are essential for development and play crucial roles in organization of chromatin, modification of epigenetic states and regulation of genetic activity. Vertebrates express multiple linker histone H1 isoforms, which may function redundantly. In contrast, H1 isoforms are not present in Dipterans, including D. melanogaster, except for an embryo-specific, distantly related dBigH1. Here we show that Drosophila BEN domain protein Elba2, which is expressed in early embryos and was hypothesized to have insulator-specific functions, can compensate for the loss of H1 in vivo. Although the Elba2 gene is not essential, its mutation causes a disruption of normal internucleosomal spacing of chromatin and reduced nuclear compaction in syncytial embryos. Elba2 protein is distributed ubiquitously in polytene chromosomes and strongly colocalizes with H1. In H1-depleted animals, ectopic expression of Elba2 rescues the increased lethality and ameliorates abnormalities of chromosome architecture and heterochromatin functions. We also demonstrate that ectopic expression of BigH1 similarly complements the deficiency of H1 protein. Thus, in organisms that do not express redundant H1 isoforms, the structural and biological functions performed by canonical linker histones in later development, may be shared in early embryos by weakly homologous proteins, such as BigH1, or even unrelated, non-homologous proteins, such as Elba2.

6.
FEBS Lett ; 579(26): 5940-9, 2005 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-16198344

RESUMEN

Knowledge of the role of RNA in affecting gene expression has expanded in the past several years. Small RNAs serve as homology guides to target messenger RNAs for destruction at the post-transcriptional level in the experimental technique known as RNA interference and in the silencing of some transgenes. These small RNAs are also involved in sequence-specific targeting of chromatin modifications for transcriptional silencing of transgenes, transposable elements, heterochromatin and some cases of Polycomb-mediated gene silencing. RNA silencing processes in Drosophila are described.


Asunto(s)
Drosophila melanogaster/fisiología , Regulación de la Expresión Génica , Interferencia de ARN , ARN Interferente Pequeño , Animales , Cromatina/metabolismo , ADN/genética , Reparación del ADN , Elementos Transponibles de ADN , Drosophila melanogaster/genética , Silenciador del Gen , Heterocromatina/química , Modelos Biológicos , Modelos Genéticos , Procesamiento Proteico-Postraduccional , ARN/química , ARN/genética , Edición de ARN , ARN Mensajero/metabolismo , Transcripción Genética , Transgenes
7.
G3 (Bethesda) ; 5(4): 677-87, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25628309

RESUMEN

Chromatin structure and activity can be modified through ATP-dependent repositioning of nucleosomes and posttranslational modifications of core histone tails within nucleosome core particles and by deposition of linker histones into the oligonucleosome fiber. The linker histone H1 is essential in metazoans. It has a profound effect on organization of chromatin into higher-order structures and on recruitment of histone-modifying enzymes to chromatin. Here, we describe a genetic screen for modifiers of the lethal phenotype caused by depletion of H1 in Drosophila melanogaster. We identify 41 mis-expression alleles that enhance and 20 that suppress the effect of His1 depletion in vivo. Most of them are important for chromosome organization, transcriptional regulation, and cell signaling. Specifically, the reduced viability of H1-depleted animals is strongly suppressed by ubiquitous mis-expression of the ATP-dependent chromatin remodeling enzyme CHD1. Comparison of transcript profiles in H1-depleted and Chd1 null mutant larvae revealed that H1 and CHD1 have common transcriptional regulatory programs in vivo. H1 and CHD1 share roles in repression of numerous developmentally regulated and extracellular stimulus-responsive transcripts, including immunity-related and stress response-related genes. Thus, linker histone H1 participates in various regulatory programs in chromatin to alter gene expression.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Drosophila/genética , Drosophila/genética , Drosophila/metabolismo , Regulación de la Expresión Génica , Histonas/genética , Factores de Transcripción/genética , Alelos , Animales , Cromatina/fisiología , Ensamble y Desensamble de Cromatina , Proteínas de Unión al ADN/metabolismo , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/metabolismo , Perfilación de la Expresión Génica , Genotipo , Histonas/antagonistas & inhibidores , Histonas/metabolismo , Larva/metabolismo , Interferencia de ARN , ARN Bicatenario/metabolismo , Temperatura , Factores de Transcripción/metabolismo
8.
Science ; 340(6128): 78-81, 2013 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-23559249

RESUMEN

Eukaryotic genomes harbor transposable elements and other repetitive sequences that must be silenced. Small RNA interference pathways play a major role in their repression. Here, we reveal another mechanism for silencing these sequences in Drosophila. Depleting the linker histone H1 in vivo leads to strong activation of these elements. H1-mediated silencing occurs in combination with the heterochromatin-specific histone H3 lysine 9 methyltransferase Su(var)3-9. H1 physically interacts with Su(var)3-9 and recruits it to chromatin in vitro, which promotes H3 methylation. We propose that H1 plays a key role in silencing by tethering Su(var)3-9 to heterochromatin. The tethering function of H1 adds to its established role as a regulator of chromatin compaction and accessibility.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Silenciador del Gen , Heterocromatina/metabolismo , Histonas/metabolismo , Secuencias Repetitivas de Ácidos Nucleicos/genética , Proteínas Represoras/metabolismo , Animales , Proteínas de Drosophila/genética , Histonas/genética , Proteínas Musculares/genética , Interferencia de ARN , Factores de Transcripción/genética
9.
Epigenetics Chromatin ; 2(1): 15, 2009 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-19917092

RESUMEN

BACKGROUND: Heterochromatin is the tightly packaged dynamic region of the eukaryotic chromosome that plays a vital role in cellular processes such as mitosis and meiotic recombination. Recent experiments in Schizosaccharomyces pombe have revealed the structure of centromeric heterochromatin is affected in RNAi pathway mutants. It has also been shown in fission yeast that the heterochromatin barrier is traversed by RNA Pol II and that the passage of RNA Pol II through heterochromatin is important for heterochromatin structure. Thus, an intricate interaction between the RNAi machinery and RNA Pol II affects heterochromatin structure. However, the role of the RNAi machinery and RNA Pol II on the metazoan heterochromatin landscape is not known. This study analyses the interaction of the small RNA machinery and RNA Pol II on Drosophila heterochromatin structure. RESULTS: The results in this paper show genetic and biochemical interaction between RNA Pol II (largest and second largest subunit) and small RNA silencing machinery components (dcr-2, ago1, ago2, piwi, Lip [D], aub and hls). Immunofluorescence analysis of polytene chromosomes from trans-heterozygotes of RNA Pol II and different mutations of the small RNA pathways show decreased H3K9me2 and mislocalization of Heterochromatin protein-1. A genetic analysis performed on these mutants showed a strong suppression of white-mottled4h position effect variegation. This was further corroborated by a western blot analysis and chromatin immunoprecipitation, which showed decreased H3K9me2 in trans-heterozygote mutants compared to wild type or single heterozygotes. Co-immunoprecipitation performed using Drosophila embryo extracts showed the RNA Pol II largest subunit interacting with Dcr-2 and dAGO1. Co-localization performed on polytene chromosomes showed RNA Pol II and dAGO1 overlapping at some sites. CONCLUSION: Our experiments show a genetic and biochemical interaction between RNA Pol II (largest and second largest subunits) and the small RNA silencing machinery in Drosophila. The interaction has functional aspects in terms of determining H3K9me2 and HP-1 deposition at the chromocentric heterochromatin. Thus, RNA Pol II has an important role in establishing heterochromatin structure in Drosophila.

10.
BMC Res Notes ; 2: 217, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19852816

RESUMEN

BACKGROUND: CG11033 (dKDM2) is the Drosophila homolog of the gene KDM2B. dKDM2 has been known to possess histone lysine demethylase activity towards H3K36me2 in cell lines and it regulates H2A ubiquitination. The human homolog of the gene has dual activity towards H3K36me2 as well as H3K4me3, and plays an important role in cellular senescence. FINDINGS: We have used transgenic flies bearing an RNAi construct for the dKDM2 gene. The knockdown of dKDM2 gene was performed by crossing UAS-RNAi-dKDM2 flies with actin-Gal4 flies. Western blots of acid extracted histones and immunofluoresence analysis of polytene chromosome showed the activity of the enzyme dKDM2 to be specific for H3K4me3 in adult flies. Immunofluoresence analysis of polytene chromosome also revealed the presence of multiple nucleoli in RNAi knockdown mutants of dKDM2 and decreased H3-acetylation marks associated with active transcription. CONCLUSION: Our findings indicate that dKDM2 is a histone lysine demethylase with specificity for H3K4me3 and regulates nucleolar organization.

11.
Bioessays ; 28(6): 565-8, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16700062

RESUMEN

The sex chromosomes of many species differ in dosage but the total gene expression output is similar, a phenomenon referred to as dosage compensation. Previously, diverse mechanisms were postulated to account for compensation in distantly related taxa. However, two recent papers present evidence that dosage compensation in Drosophila, mammals and nematodes share the property that there is an approximately two-fold upregulation of the single active X chromosome in each case.(1,2) The results suggest that a common mechanism might operate in these different cases.


Asunto(s)
Cromosomas Sexuales/genética , Animales , Cromatina/genética , Genoma/genética , Humanos
12.
Bioessays ; 27(12): 1209-12, 2005 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-16299769

RESUMEN

The RNAi machinery is not only involved with post-transcriptional degradation of messenger RNAs, but also used for targeting of chromatin changes associated with transcriptional silencing. Two recent papers determine the global patterns of gene expression and chromatin modifications produced by the RNAi machinery in fission yeast.(9, 10) The major sites include the outer centromere repeats, the mating-type locus and subtelomeric regions. By comparison, studies of Arabidopsis heterochromatin also implicate transposons as a major target for silencing. Analyses of siRNA libraries from Drosophila, nematodes and Arabidopsis indicate that major repeats at centromeres, telomeres and transposable elements are likely targets of RNAi. Also, intergenic regions are implicated as targets in Arabidopsis.


Asunto(s)
Silenciador del Gen , ARN Interferente Pequeño/metabolismo , Transcripción Genética/genética , Animales , Elementos Transponibles de ADN/genética , Perfilación de la Expresión Génica , Heterocromatina/genética , ARN Interferente Pequeño/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA