Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
PLoS Pathog ; 14(3): e1006907, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29554137

RESUMEN

Staphylococcus aureus exhibits many defenses against host innate immunity, including the ability to replicate in the presence of nitric oxide (NO·). S. aureus NO· resistance is a complex trait and hinges on the ability of this pathogen to metabolically adapt to the presence of NO·. Here, we employed deep sequencing of transposon junctions (Tn-Seq) in a library generated in USA300 LAC to define the complete set of genes required for S. aureus NO· resistance. We compared the list of NO·-resistance genes to the set of genes required for LAC to persist within murine skin infections (SSTIs). In total, we identified 168 genes that were essential for full NO· resistance, of which 49 were also required for S. aureus to persist within SSTIs. Many of these NO·-resistance genes were previously demonstrated to be required for growth in the presence of this immune radical. However, newly defined genes, including those encoding SodA, MntABC, RpoZ, proteins involved with Fe-S-cluster repair/homeostasis, UvrABC, thioredoxin-like proteins and the F1F0 ATPase, have not been previously reported to contribute to S. aureus NO· resistance. The most striking finding was that loss of any genes encoding components of the F1F0 ATPase resulted in mutants unable to grow in the presence of NO· or any other condition that inhibits cellular respiration. In addition, these mutants were highly attenuated in murine SSTIs. We show that in S. aureus, the F1F0 ATPase operates in the ATP-hydrolysis mode to extrude protons and contribute to proton-motive force. Loss of efficient proton extrusion in the ΔatpG mutant results in an acidified cytosol. While this acidity is tolerated by respiring cells, enzymes required for fermentation cannot operate efficiently at pH ≤ 7.0 and the ΔatpG mutant cannot thrive. Thus, S. aureus NO· resistance requires a mildly alkaline cytosol, a condition that cannot be achieved without an active F1F0 ATPase enzyme complex.


Asunto(s)
Proteínas Bacterianas/genética , Inmunidad Innata/inmunología , Óxido Nítrico/farmacología , Infecciones Cutáneas Estafilocócicas/inmunología , Staphylococcus aureus/efectos de los fármacos , Virulencia/inmunología , Animales , Regulación Bacteriana de la Expresión Génica , Biblioteca de Genes , Inmunidad Innata/efectos de los fármacos , Inmunidad Innata/genética , Ratones , Ratones Endogámicos C57BL , Infecciones Cutáneas Estafilocócicas/genética , Infecciones Cutáneas Estafilocócicas/microbiología , Staphylococcus aureus/inmunología , Virulencia/efectos de los fármacos , Virulencia/genética
2.
Infect Immun ; 82(6): 2504-10, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24686053

RESUMEN

The adaptive immune response to Francisella tularensis is dependent on the route of inoculation. Intradermal inoculation with the F. tularensis live vaccine strain (LVS) results in a robust Th1 response in the lungs, whereas intranasal inoculation produces fewer Th1 cells and instead many Th17 cells. Interestingly, bacterial loads in the lungs are similar early after inoculation by these two routes. We hypothesize that the adaptive immune response is influenced by local events in the lungs, such as the type of cells that are first infected with Francisella. Using fluorescence-activated cell sorting, we identified alveolar macrophages as the first cell type infected in the lungs of mice intranasally inoculated with F. novicida U112, LVS, or F. tularensis Schu S4. Following bacterial dissemination from the skin to the lung, interstitial macrophages or neutrophils are infected. Overall, we identified the early interactions between Francisella and the host following two different routes of inoculation.


Asunto(s)
Francisella tularensis/inmunología , Interacciones Huésped-Patógeno/inmunología , Pulmón/microbiología , Tularemia/inmunología , Inmunidad Adaptativa , Administración Intranasal , Animales , Carga Bacteriana , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Pulmón/inmunología , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Neutrófilos/microbiología , Alveolos Pulmonares/microbiología , Tularemia/microbiología
3.
BMC Microbiol ; 14: 336, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25551578

RESUMEN

BACKGROUND: Francisella tularensis is a Gram-negative bacterium that infects hundreds of species including humans, and has evolved to grow efficiently within a plethora of cell types. RipA is a conserved membrane protein of F. tularensis, which is required for growth inside host cells. As a means to determine RipA function we isolated and mapped independent extragenic suppressor mutants in ∆ripA that restored growth in host cells. Each suppressor mutation mapped to one of two essential genes, lpxA or glmU, which are involved in lipid A synthesis. We repaired the suppressor mutation in lpxA (S102, LpxA T36N) and the mutation in glmU (S103, GlmU E57D), and demonstrated that each mutation was responsible for the suppressor phenotype in their respective strains. We hypothesize that the mutation in S102 altered the stability of LpxA, which can provide a clue to RipA function. LpxA is an UDP-N-acetylglucosamine acyltransferase that catalyzes the transfer of an acyl chain from acyl carrier protein (ACP) to UDP-N-acetylglucosamine (UDP-GlcNAc) to begin lipid A synthesis. RESULTS: LpxA was more abundant in the presence of RipA. Induced expression of lpxA in the ΔripA strain stopped bacterial division. The LpxA T36N S102 protein was less stable and therefore less abundant than wild type LpxA protein. CONCLUSION: These data suggest RipA functions to modulate lipid A synthesis in F. tularensis as a way to adapt to the host cell environment by interacting with LpxA.


Asunto(s)
Proteínas Bacterianas/genética , Mutación/genética , Supresión Genética/genética , Aciltransferasas/genética , Francisella tularensis/genética , Lípido A/genética
4.
J Bacteriol ; 195(5): 965-76, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23243306

RESUMEN

Pantothenate, commonly referred to as vitamin B(5), is an essential molecule in the metabolism of living organisms and forms the core of coenzyme A. Unlike humans, some bacteria and plants are capable of de novo biosynthesis of pantothenate, making this pathway a potential target for drug development. Francisella tularensis subsp. tularensis Schu S4 is a zoonotic bacterial pathogen that is able to synthesize pantothenate but is lacking the known ketopantoate reductase (KPR) genes, panE and ilvC, found in the canonical Escherichia coli pathway. Described herein is a gene encoding a novel KPR, for which we propose the name panG (FTT1388), which is conserved in all sequenced Francisella species and is the sole KPR in Schu S4. Homologs of this KPR are present in other pathogenic bacteria such as Enterococcus faecalis, Coxiella burnetii, and Clostridium difficile. Both the homologous gene from E. faecalis V583 (EF1861) and E. coli panE functionally complemented Francisella novicida lacking any KPR. Furthermore, panG from F. novicida can complement an E. coli KPR double mutant. A Schu S4 ΔpanG strain is a pantothenate auxotroph and was genetically and chemically complemented with panG in trans or with the addition of pantolactone. There was no virulence defect in the Schu S4 ΔpanG strain compared to the wild type in a mouse model of pneumonic tularemia. In summary, we characterized the pantothenate pathway in Francisella novicida and F. tularensis and identified an unknown and previously uncharacterized KPR that can convert 2-dehydropantoate to pantoate, PanG.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Francisella tularensis/enzimología , Ácido Pantoténico/biosíntesis , 4-Butirolactona/análogos & derivados , 4-Butirolactona/metabolismo , Animales , Clostridioides difficile/enzimología , Coenzima A/biosíntesis , Coxiella burnetii/enzimología , Enterococcus faecalis/enzimología , Escherichia coli/enzimología , Francisella tularensis/genética , Francisella tularensis/metabolismo , Ratones , Tularemia/microbiología
5.
Infect Immun ; 81(6): 2028-42, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23529616

RESUMEN

Bacterial attenuation is typically thought of as reduced bacterial growth in the presence of constant immune pressure. Infection with Francisella tularensis elicits innate and adaptive immune responses. Several in vivo screens have identified F. tularensis genes necessary for virulence. Many of these mutations render F. tularensis defective for intracellular growth. However, some mutations have no impact on intracellular growth, leading us to hypothesize that these F. tularensis mutants are attenuated because they induce an altered host immune response. We were particularly interested in the F. tularensis LVS (live vaccine strain) clpB (FTL_0094) mutant because this strain was attenuated in pneumonic tularemia yet induced a protective immune response. The attenuation of LVS clpB was not due to an intracellular growth defect, as LVS clpB grew similarly to LVS in primary bone marrow-derived macrophages and a variety of cell lines. We therefore determined whether LVS clpB induced an altered immune response compared to that induced by LVS in vivo. We found that LVS clpB induced proinflammatory cytokine production in the lung early after infection, a process not observed during LVS infection. LVS clpB provoked a robust adaptive immune response similar in magnitude to that provoked by LVS but with increased gamma interferon (IFN-γ) and interleukin-17A (IL-17A) production, as measured by mean fluorescence intensity. Altogether, our results indicate that LVS clpB is attenuated due to altered host immunity and not an intrinsic growth defect. These results also indicate that disruption of a nonessential gene(s) that is involved in bacterial immune evasion, like F. tularensis clpB, can serve as a model for the rational design of attenuated vaccines.


Asunto(s)
Vacunas Bacterianas/inmunología , Francisella tularensis/genética , Tularemia/prevención & control , Animales , Línea Celular , Francisella tularensis/inmunología , Francisella tularensis/patogenicidad , Regulación de la Expresión Génica/inmunología , Humanos , Interferón gamma/genética , Interferón gamma/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Linfocitos T/fisiología , Vacunas Atenuadas/inmunología , Virulencia
6.
J Bacteriol ; 194(6): 1474-84, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22267515

RESUMEN

Francisella tularensis is a Gram-negative coccobacillus and is the etiological agent of the disease tularemia. Expression of the cytoplasmic membrane protein RipA is required for Francisella replication within macrophages and other cell types; however, the function of this protein remains unknown. RipA is conserved among all sequenced Francisella species, and RipA-like proteins are present in a number of individual strains of a wide variety of species scattered throughout the prokaryotic kingdom. Cross-linking studies revealed that RipA forms homoligomers. Using a panel of RipA-green fluorescent protein and RipA-PhoA fusion constructs, we determined that RipA has a unique topology within the cytoplasmic membrane, with the N and C termini in the cytoplasm and periplasm, respectively. RipA has two significant cytoplasmic domains, one composed roughly of amino acids 1 to 50 and the second flanked by the second and third transmembrane domains and comprising amino acids 104 to 152. RipA functional domains were identified by measuring the effects of deletion mutations, amino acid substitution mutations, and spontaneously arising intragenic suppressor mutations on intracellular replication, induction of interleukin-1ß (IL-1ß) secretion by infected macrophages, and oligomer formation. Results from these experiments demonstrated that each of the cytoplasmic domains and specific amino acids within these domains are required for RipA function.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Francisella tularensis/química , Francisella tularensis/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Sustitución de Aminoácidos , Animales , Línea Celular , Membrana Celular/química , Citoplasma/química , Francisella tularensis/crecimiento & desarrollo , Francisella tularensis/patogenicidad , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/inmunología , Macrófagos/microbiología , Ratones , Modelos Biológicos , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Periplasma/química , Monoéster Fosfórico Hidrolasas/genética , Monoéster Fosfórico Hidrolasas/metabolismo , Multimerización de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Eliminación de Secuencia , Coloración y Etiquetado/métodos , Supresión Genética
7.
Appl Environ Microbiol ; 78(19): 6883-9, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22820330

RESUMEN

There are a number of genetic tools available for studying Francisella tularensis, the etiological agent of tularemia; however, there is no effective inducible or repressible gene expression system. Here, we describe inducible and repressible gene expression systems for F. tularensis based on the Tet repressor, TetR. For the inducible system, a tet operator sequence was cloned into a modified F. tularensis groESL promoter sequence and carried in a plasmid that constitutively expressed TetR. To monitor regulation the luminescence operon, luxCDABE, was cloned under the hybrid Francisella tetracycline-regulated promoter (FTRp), and transcription was initiated with addition of anhydrotetracycline (ATc), which binds TetR and alleviates TetR association with tetO. Expression levels measured by luminescence correlated with ATc inducer concentrations ranging from 20 to 250 ng ml(-1). In the absence of ATc, luminescence was below the level of detection. The inducible system was also functional during the infection of J774A.1 macrophages, as determined by both luminescence and rescue of a mutant strain with an intracellular growth defect. The repressible system consists of FTRp regulated by a reverse TetR mutant (revTetR), TetR r1.7. Using this system with the lux reporter, the addition of ATc resulted in decreased luminescence, while in the absence of ATc the level of luminescence was not significantly different from that of a construct lacking TetR r1.7. Utilizing both systems, the essentiality of SecA, the protein translocase ATPase, was confirmed, establishing that they can effectively regulate gene expression. These two systems will be invaluable in exploring F. tularensis protein function.


Asunto(s)
Francisella tularensis/genética , Regulación Bacteriana de la Expresión Génica , Ingeniería Genética/métodos , Factores de Transcripción/genética , Animales , Fusión Artificial Génica , Línea Celular , Genes Reporteros , Genética Microbiana/métodos , Mediciones Luminiscentes , Proteínas Luminiscentes/análisis , Proteínas Luminiscentes/genética , Macrófagos/microbiología , Ratones , Biología Molecular/métodos , Plásmidos , Regiones Promotoras Genéticas
8.
J Immunol ; 185(9): 5476-85, 2010 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-20921527

RESUMEN

Francisella tularensis is a facultative intracellular pathogen and potential biothreat agent. Evasion of the immune response contributes to the extraordinary virulence of this organism although the mechanism is unclear. Whereas wild-type strains induced low levels of cytokines, an F. tularensis ripA deletion mutant (LVSΔripA) provoked significant release of IL-1ß, IL-18, and TNF-α by resting macrophages. IL-1ß and IL-18 secretion was dependent on inflammasome components pyrin-caspase recruitment domain/apoptotic speck-containing protein with a caspase recruitment domain and caspase-1, and the TLR/IL-1R signaling molecule MyD88 was required for inflammatory cytokine synthesis. Complementation of LVSΔripA with a plasmid encoding ripA restored immune evasion. Similar findings were observed in a human monocytic line. The presence of ripA nearly eliminated activation of MAPKs including ERK1/2, JNK, and p38, and pharmacologic inhibitors of these three MAPKs reduced cytokine induction by LVSΔripA. Animals infected with LVSΔripA mounted a stronger IL-1ß and TNF-α response than that of mice infected with wild-type live vaccine strain. This analysis revealed novel immune evasive mechanisms of F. tularensis.


Asunto(s)
Francisella tularensis/patogenicidad , Genes Bacterianos/inmunología , Inflamación/genética , Macrófagos/inmunología , Proteínas Quinasas Activadas por Mitógenos/genética , Transducción de Señal/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/inmunología , Proteínas Bacterianas/metabolismo , Western Blotting , Citocinas/biosíntesis , Ensayo de Inmunoadsorción Enzimática , Femenino , Francisella tularensis/genética , Francisella tularensis/inmunología , Genes Bacterianos/genética , Humanos , Evasión Inmune/genética , Evasión Inmune/inmunología , Inflamación/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Quinasas Activadas por Mitógenos/inmunología , Transducción de Señal/inmunología , Tularemia/genética , Tularemia/inmunología
9.
Immunology ; 132(3): 348-60, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21214540

RESUMEN

Francisella tularensis is a Gram-negative intracellular bacterium that is the causative agent of tularaemia. Concerns regarding its use as a bioterrorism agent have led to a renewed interest in the biology of infection, host response and pathogenesis. A robust T-cell response is critical to confer protection against F. tularensis. However, characterization of the cellular immune response has been hindered by the paucity of tools to examine the anti-Francisella immune response at the molecular level. We set out to combine recent advances of genomics with solid-phase antigen delivery coupled with a T-cell functional assay to identify T-cell epitopes. A subset of clones, encoding serological targets, was selected from an F. tularensis SchuS4 ordered genomic library and subcloned into a bacterial expression vector to test the feasibility of this approach. Proteins were expressed and purified individually employing the BioRobot 3000 in a semi-automated purification method. The purified proteins were coupled to beads, delivered to antigen-presenting cells for processing, and screened with Francisella-specific T-cell hybridomas of unknown specificity. We identified cellular reactivity against the pathogenicity protein IglB, and the chaperone proteins GroEL and DnaK. Further analyses using genetic deletions and synthetic peptides were performed to identify the minimal peptide epitopes. Priming with the peptide epitopes before infection with F. tularensis LVS increased the frequency of antigen-specific CD4 T cells as assessed by intracellular interferon-γ staining. These results illustrate the feasibility of screening an arrayed protein library that should be applicable to a variety of pathogens.


Asunto(s)
Proteínas Bacterianas/inmunología , Linfocitos T CD4-Positivos/inmunología , Epítopos de Linfocito T/inmunología , Francisella tularensis/inmunología , Análisis por Matrices de Proteínas/métodos , Tularemia/inmunología , Animales , Hibridomas , Immunoblotting , Ratones , Ratones Endogámicos C57BL
10.
Infect Immun ; 78(12): 5022-32, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20921148

RESUMEN

Francisella tularensis is a highly virulent Gram-negative bacterium and is the etiological agent of the disease tularemia. IclR, a presumed transcriptional regulator, is required for full virulence of the animal pathogen, F. tularensis subspecies novicida U112 (53). In this study, we investigated the contribution of IclR to the intracellular growth, virulence, and gene regulation of human pathogenic F. tularensis subspecies. Deletion of iclR from the live vaccine strain (LVS) and SchuS4 strain of F. tularensis subsp. holarctica and F. tularensis subsp. tularensis, respectively, did not affect their abilities to replicate within macrophages or epithelial cells. In contrast to F. tularensis subsp. novicida iclR mutants, LVS and SchuS4 ΔiclR strains were as virulent as their wild-type parental strains in intranasal inoculation mouse models of tularemia. Furthermore, wild-type LVS and LVSΔiclR were equally cytotoxic and induced equivalent levels of interleukin-1ß expression by infected bone marrow-derived macrophages. Microarray analysis revealed that the relative expression of a limited number of genes differed significantly between LVS wild-type and ΔiclR strains. Interestingly, many of the identified genes were disrupted in LVS and SchuS4 but not in their corresponding F. tularensis subsp. novicida U112 homologs. Thus, despite the impact of iclR deletion on gene expression, and in contrast to the effects of iclR deletion on F. tularensis subsp. novicida virulence, IclR does not contribute significantly to the virulence or pathogenesis of F. tularensis LVS or SchuS4.


Asunto(s)
Francisella tularensis/patogenicidad , Factores de Transcripción/fisiología , Tularemia/microbiología , Animales , Línea Celular , Ensayo de Inmunoadsorción Enzimática , Francisella tularensis/genética , Francisella tularensis/fisiología , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Interleucina-1beta/fisiología , Ratones , Ratones Endogámicos C57BL , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Eliminación de Secuencia/fisiología , Factores de Transcripción/genética
11.
BMC Microbiol ; 9: 216, 2009 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-19821974

RESUMEN

BACKGROUND: Francisella tularensis is a highly virulent, facultative intracellular pathogen and the etiologic agent of the zoonotic disease Tularemia. RipA is a cytoplasmic membrane protein that is conserved among Francisella species and is required for intracellular growth. F. tularensis ripA deletion mutants escape the phagosome of infected cells, but unlike wild type organisms fail to replicate in the host cell cytoplasm. RESULTS: Further analysis of ripA with respect to environmental effects on the growth of mutant strains and expression levels revealed that RipA is required for optimal growth at pH 7.5 but not pH 6.5. Using a combination of RT-PCR, ripA-lacZ transcriptional and translational fusions, and a RipA-tetracysteine tag fusion protein we found that both ripA transcription and RipA protein levels were elevated in organisms grown at pH 7.5 as compared to organisms grown at pH 5.5. A number of genes, including iglA, that are required for intracellular growth are regulated by the transcriptional regulators MglA and SspA, and are induced upon infection of host cells. We quantified ripA and iglA expression at different stages of intracellular growth and found that the expression of each increased between 1 and 6 hours post infection. Given the similar intracellular expression patterns of ripA and iglA and that MglA and SspA are positive regulators of iglA we tested the impact of mglA and sspA deletions on ripA and iglA expression. In the deletion mutant strains iglA expression was reduced dramatically as expected, however ripA expression was increased over 2-fold. CONCLUSION: Expression of ripA is required for growth at neutral pH, is pH sensitive, and is responsive to the intracellular environment. The intracellular expression pattern of ripA coincided with iglA, which is positively regulated by MglA and SspA. However, in contrast to their positive impact on iglA expression, MglA and SspA negatively impacted ripA expression in vitro.


Asunto(s)
Proteínas Bacterianas/metabolismo , Francisella tularensis/crecimiento & desarrollo , Regulación Bacteriana de la Expresión Génica , Proteínas de la Membrana/metabolismo , Proteínas Bacterianas/genética , Francisella tularensis/genética , Genes Bacterianos , Concentración de Iones de Hidrógeno , Proteínas de la Membrana/genética , ARN Bacteriano/genética , Análisis de Secuencia de ADN , Eliminación de Secuencia , Transcripción Genética
12.
Elife ; 82019 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-31017571

RESUMEN

Previously, we found that phagocytic cells ingest bacteria directly from the cytosol of infected cells without killing the initially infected cell (Steele et al., 2016). Here, we explored the events immediately following bacterial transfer. Francisella tularensis bacteria acquired from infected cells were found within double-membrane vesicles partially composed from the donor cell plasma membrane. As with phagosomal escape, the F. tularensis Type VI Secretion System (T6SS) was required for vacuole escape. We constructed a T6SS inducible strain and established conditions where this strain is trapped in vacuoles of cells infected through bacterial transfer. Using this strain we identified bacterial transfer events in the lungs of infected mice, demonstrating that this process occurs in infected animals. These data and electron microscopy analysis of the transfer event revealed that macrophages acquire cytoplasm and membrane components of other cells through a process that is distinct from, but related to phagocytosis.


Asunto(s)
Vesículas Citoplasmáticas/microbiología , Endocitosis , Francisella tularensis/crecimiento & desarrollo , Fagocitos/microbiología , Fagocitos/fisiología , Animales , Modelos Animales de Enfermedad , Pulmón/microbiología , Pulmón/patología , Ratones , Tularemia/microbiología , Tularemia/patología
13.
Infect Immun ; 76(6): 2651-9, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18391003

RESUMEN

Two key routes of Francisella tularensis infection are through the skin and airway. We wished to understand how the route of inoculation influenced the primary acute adaptive immune response. We show that an intranasal inoculation of the F. tularensis live vaccine strain (LVS) with a 1,000-fold-smaller dose than an intradermal dose results in similar growth kinetics and peak bacterial burdens. In spite of similar bacterial burdens, we demonstrate a difference in the quality, magnitude, and kinetics of the primary acute T-cell response depending on the route of inoculation. Further, we show that prostaglandin E(2) secretion in the lung is responsible for the difference in the gamma interferon (IFN-gamma) response. Intradermal inoculation led to a large number of IFN-gamma(+) T cells 7 days after infection in both the spleen and the lung. In contrast, intranasal inoculation induced a lower number of IFN-gamma(+) T cells in the spleen and lung but an increased number of Th17 cells in the lung. Intranasal infection also led to a significant increase of prostaglandin E(2) (PGE(2)) in the bronchoalveolar lavage fluid. Inhibition of PGE(2) production with indomethacin treatment resulted in increased numbers of IFN-gamma(+) T cells and decreased bacteremia in the lungs of intranasally inoculated mice. This research illuminates critical differences in acute adaptive immune responses between inhalational and dermal infection with F. tularensis LVS mediated by the innate immune system and PGE(2).


Asunto(s)
Vacunas Bacterianas/inmunología , Dinoprostona/metabolismo , Francisella tularensis/inmunología , Interferón gamma/metabolismo , Macrófagos/inmunología , Tularemia/inmunología , Animales , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/metabolismo , Femenino , Francisella tularensis/metabolismo , Pulmón/citología , Pulmón/inmunología , Pulmón/microbiología , Macrófagos/metabolismo , Macrófagos/microbiología , Ratones , Ratones Endogámicos C57BL , Organismos Libres de Patógenos Específicos , Bazo/citología , Bazo/inmunología , Bazo/microbiología
14.
Infect Immun ; 76(7): 2833-42, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18426871

RESUMEN

Francisella tularensis, a gram-negative facultative intracellular bacterial pathogen, causes disseminating infections in humans and other mammalian hosts. Macrophages and other monocytes have long been considered the primary site of F. tularensis replication in infected animals. However, recently it was reported that F. tularensis also invades and replicates within alveolar epithelial cells following inhalation in a mouse model of tularemia. TC-1 cells, a mouse lung epithelial cell line, were used to study the process of F. tularensis invasion and intracellular trafficking within nonphagocytic cells. Live and paraformaldehyde-fixed F. tularensis live vaccine strain organisms associated with, and were internalized by, TC-1 cells at similar frequencies and with indistinguishable differences in kinetics. Inhibitors of microfilament and microtubule activity resulted in significantly decreased F. tularensis invasion, as did inhibitors of phosphatidylinositol 3-kinase and tyrosine kinase activity. Collectively, these results suggest that F. tularensis epithelial cell invasion is mediated by a preformed ligand on the bacterial surface and driven entirely by host cell processes. Once internalized, F. tularensis-containing endosomes associated with early endosome antigen 1 (EEA1) followed by lysosome-associated membrane protein 1 (LAMP-1), with peak coassociation frequencies occurring at 30 and 120 min postinoculation, respectively. By 2 h postinoculation, 70.0% (+/- 5.5%) of intracellular bacteria were accessible to antibody delivered to the cytoplasm, indicating vacuolar breakdown and escape into the cytoplasm.


Asunto(s)
Células Epiteliales/microbiología , Francisella tularensis/patogenicidad , Pulmón/microbiología , Actinas/metabolismo , Animales , Línea Celular Transformada , Línea Celular Tumoral , Endocitosis , Endosomas/microbiología , Células Epiteliales/ultraestructura , Humanos , Pulmón/citología , Pulmón/ultraestructura , Proteínas de Membrana de los Lisosomas/metabolismo , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica , Microscopía Fluorescente , Microtúbulos/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular/metabolismo
15.
Infect Immun ; 76(11): 4934-43, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18765722

RESUMEN

Francisella tularensis is a highly virulent bacterial pathogen that invades and replicates within numerous host cell types, including macrophages and epithelial cells. In an effort to better understand this process, we screened a transposon insertion library of the F. tularensis live vaccine strain (LVS) for mutant strains that invaded but failed to replicate within alveolar epithelial cell lines. One such strain isolated from this screen contained an insertion in the gene FTL_1914, which is conserved among all sequenced Francisella species yet lacks significant homology to any gene with known function. A deletion strain lacking FTL_1914 was constructed. This strain did not replicate in either epithelial or macrophage-like cells, and intracellular replication was restored by the wild-type allele in trans. Based on the deletion mutant phenotype, FTL_1914 was termed ripA (required for intracellular proliferation, factor A). Following uptake by J774.A1 cells, F. tularensis LVS Delta ripA colocalized with LAMP-1 then escaped the phagosome at the same rate and frequency as wild-type LVS-infected cells. Electron micrographs of the F. tularensis LVS Delta ripA mutant demonstrated the reentry of the mutant bacteria into double membrane vacuoles characteristic of autophagosomes in a process that was not dependent on replication. The F. tularensis LVS Delta ripA mutant was significantly impaired in its ability to persist in the lung and in its capacity to disseminate and colonize the liver and spleen in a mouse model of pulmonary tularemia. The RipA protein was expressed during growth in laboratory media and localized to the cytoplasmic membrane. Thus, RipA is a cytoplasmic membrane protein conserved among Francisella species that is required for intracellular replication within the host cell cytoplasm as well as disease progression, dissemination, and virulence.


Asunto(s)
Proteínas Bacterianas/genética , Francisella tularensis/genética , Francisella tularensis/patogenicidad , Proteínas de la Membrana/genética , Tularemia/genética , Animales , Proteínas Bacterianas/metabolismo , Western Blotting , Proliferación Celular , Electroforesis en Gel de Poliacrilamida , Proteínas de la Membrana/metabolismo , Ratones , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Reacción en Cadena de la Polimerasa
16.
Infect Immun ; 76(12): 5843-52, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18852251

RESUMEN

Francisella tularensis causes systemic disease in humans and other mammals, with high morbidity and mortality associated with inhalation-acquired infection. F. tularensis is a facultative intracellular pathogen, but the scope and significance of cell types infected during disease is unknown. Using flow cytometry, we identified and quantified infected-cell types and assessed the impact of infection on cell populations following inhalation of F. tularensis strains U112, LVS, and Schu S4. Initially, alveolar macrophages comprised over 70% of Schu S4- and LVS-infected cells, whereas approximately 51% and 27% of U112-infected cells were alveolar macrophages and neutrophils, respectively. After 3 days, roughly half of Schu S4- and LVS- and nearly 80% of U112-infected cells were neutrophils. All strains infected CD11b(high) macrophages, dendritic cells, monocytes, and alveolar type II cells throughout infection. Macrophage, monocyte, and dendritic-cell populations were reduced during U112 infection but not Schu S4 or LVS infection. These results demonstrate directly that F. tularensis is a promiscuous intracellular pathogen in the lung that invades and replicates within cell types ranging from migratory immune cells to structural tissue cells. However, the proportions of cell types infected and the cellular immune response evoked by the human pathogenic strain Schu S4 differ from those of the human avirulent U112.


Asunto(s)
Pulmón/inmunología , Pulmón/microbiología , Tularemia/inmunología , Tularemia/microbiología , Animales , Células Dendríticas/microbiología , Femenino , Citometría de Flujo , Francisella tularensis , Exposición por Inhalación , Pulmón/citología , Macrófagos Alveolares/microbiología , Ratones , Ratones Endogámicos C57BL , Microscopía Fluorescente , Monocitos/microbiología
17.
mBio ; 9(6)2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30459188

RESUMEN

Francisella tularensis is a Gram-negative, facultative, intracellular bacterial pathogen and one of the most virulent organisms known. A hallmark of F. tularensis pathogenesis is the bacterium's ability to replicate to high densities within the cytoplasm of infected cells in over 250 known host species, including humans. This demonstrates that F. tularensis is adept at modulating its metabolism to fluctuating concentrations of host-derived nutrients. The precise metabolic pathways and nutrients utilized by F. tularensis during intracellular growth, however, are poorly understood. Here, we use systematic mutational analysis to identify the carbon catabolic pathways and host-derived nutrients required for F. tularensis intracellular replication. We demonstrate that the glycolytic enzyme phosphofructokinase (PfkA), and thus glycolysis, is dispensable for F. tularensis SchuS4 virulence, and we highlight the importance of the gluconeogenic enzyme fructose 1,6-bisphosphatase (GlpX). We found that the specific gluconeogenic enzymes that function upstream of GlpX varied based on infection model, indicating that F. tularensis alters its metabolic flux according to the nutrients available within its replicative niche. Despite this flexibility, we found that glutamate dehydrogenase (GdhA) and glycerol 3-phosphate (G3P) dehydrogenase (GlpA) are essential for F. tularensis intracellular replication in all infection models tested. Finally, we demonstrate that host cell lipolysis is required for F. tularensis intracellular proliferation, suggesting that host triglyceride stores represent a primary source of glycerol during intracellular replication. Altogether, the data presented here reveal common nutritional requirements for a bacterium that exhibits characteristic metabolic flexibility during infection.IMPORTANCE The widespread onset of antibiotic resistance prioritizes the need for novel antimicrobial strategies to prevent the spread of disease. With its low infectious dose, broad host range, and high rate of mortality, F. tularensis poses a severe risk to public health and is considered a potential agent for bioterrorism. F. tularensis reaches extreme densities within the host cell cytosol, often replicating 1,000-fold in a single cell within 24 hours. This remarkable rate of growth demonstrates that F. tularensis is adept at harvesting and utilizing host cell nutrients. However, like most intracellular pathogens, the types of nutrients utilized by F. tularensis and how they are acquired is not fully understood. Identifying the essential pathways for F. tularensis replication may reveal new therapeutic strategies for targeting this highly infectious pathogen and may provide insight for improved targeting of intracellular pathogens in general.


Asunto(s)
Carbono/metabolismo , Citoplasma/microbiología , Francisella tularensis/crecimiento & desarrollo , Redes y Vías Metabólicas , Animales , Replicación del ADN , Femenino , Francisella tularensis/metabolismo , Fructosa-Bifosfatasa/metabolismo , Gluconeogénesis , Glucólisis , Macrófagos/microbiología , Macrófagos/fisiología , Análisis de Flujos Metabólicos , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasas/metabolismo , Tularemia/metabolismo , Virulencia
18.
Cell Host Microbe ; 24(2): 285-295.e8, 2018 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-30057173

RESUMEN

Many pathogenic intracellular bacteria manipulate the host phago-endosomal system to establish and maintain a permissive niche. The fate and identity of these intracellular compartments is controlled by phosphoinositide lipids. By mechanisms that have remained undefined, a Francisella pathogenicity island-encoded secretion system allows phagosomal escape and replication of bacteria within host cell cytoplasm. Here we report the discovery that a substrate of this system, outside pathogenicity island A (OpiA), represents a family of wortmannin-resistant bacterial phosphatidylinositol (PI) 3-kinase enzymes with members found in a wide range of intracellular pathogens, including Rickettsia and Legionella spp. We show that OpiA acts on the Francisella-containing phagosome and promotes bacterial escape into the cytoplasm. Furthermore, we demonstrate that the phenotypic consequences of OpiA inactivation are mitigated by endosomal maturation arrest. Our findings suggest that Francisella, and likely other intracellular bacteria, override the finely tuned dynamics of phagosomal PI(3)P in order to promote intracellular survival and pathogenesis.


Asunto(s)
Francisella/crecimiento & desarrollo , Francisella/patogenicidad , Interacciones Huésped-Patógeno/fisiología , Fagosomas/metabolismo , Fagosomas/microbiología , Fosfatidilinositol 3-Quinasa/metabolismo , Animales , Proteínas Bacterianas/metabolismo , Citoplasma/microbiología , Replicación del ADN , Modelos Animales de Enfermedad , Endosomas/microbiología , Femenino , Francisella/genética , Genes Bacterianos/genética , Islas Genómicas , Células HEK293 , Células HeLa , Humanos , Metabolismo de los Lípidos , Macrófagos/microbiología , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfatidilinositoles/metabolismo , Células RAW 264.7 , Sistemas de Secreción Tipo VI/metabolismo , Factores de Virulencia/metabolismo
19.
Elife ; 52016 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-26802627

RESUMEN

Macrophages are myeloid-derived phagocytic cells and one of the first immune cell types to respond to microbial infections. However, a number of bacterial pathogens are resistant to the antimicrobial activities of macrophages and can grow within these cells. Macrophages have other immune surveillance roles including the acquisition of cytosolic components from multiple types of cells. We hypothesized that intracellular pathogens that can replicate within macrophages could also exploit cytosolic transfer to facilitate bacterial spread. We found that viable Francisella tularensis, as well as Salmonella enterica bacteria transferred from infected cells to uninfected macrophages along with other cytosolic material through a transient, contact dependent mechanism. Bacterial transfer occurred when the host cells exchanged plasma membrane proteins and cytosol via a trogocytosis related process leaving both donor and recipient cells intact and viable. Trogocytosis was strongly associated with infection in mice, suggesting that direct bacterial transfer occurs by this process in vivo.


Asunto(s)
Comunicación Celular , Citoplasma/microbiología , Francisella tularensis/aislamiento & purificación , Sinapsis Inmunológicas/microbiología , Macrófagos/inmunología , Macrófagos/microbiología , Salmonella enterica/aislamiento & purificación , Animales , Línea Celular , Células Epiteliales/microbiología , Células Epiteliales/fisiología , Ratones
20.
PLoS One ; 9(12): e115225, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25506936

RESUMEN

The second-generation antipsychotic olanzapine is effective in reducing psychotic symptoms but can cause extreme weight gain in human patients. We investigated the role of the gut microbiota in this adverse drug effect using a mouse model. First, we used germ-free C57BL/6J mice to demonstrate that gut bacteria are necessary and sufficient for weight gain caused by oral delivery of olanzapine. Second, we surveyed fecal microbiota before, during, and after treatment and found that olanzapine potentiated a shift towards an "obesogenic" bacterial profile. Finally, we demonstrated that olanzapine has antimicrobial activity in vitro against resident enteric bacterial strains. These results collectively provide strong evidence for a mechanism underlying olanzapine-induced weight gain in mouse and a hypothesis for clinical translation in human patients.


Asunto(s)
Antipsicóticos/toxicidad , Benzodiazepinas/toxicidad , Microbioma Gastrointestinal/efectos de los fármacos , Aumento de Peso/efectos de los fármacos , Animales , Femenino , Ratones , Olanzapina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA