Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(4): 934-946.e15, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30343903

RESUMEN

CRISPR-Cas systems confer an adaptive immunity against viruses. Following viral injection, Cas1-Cas2 integrates segments of the viral genome (spacers) into the CRISPR locus. In type I CRISPR-Cas systems, efficient "primed" spacer acquisition and viral degradation (interference) require both the Cascade complex and the Cas3 helicase/nuclease. Here, we present single-molecule characterization of the Thermobifida fusca (Tfu) primed acquisition complex (PAC). We show that TfuCascade rapidly samples non-specific DNA via facilitated one-dimensional diffusion. Cas3 loads at target-bound Cascade and the Cascade/Cas3 complex translocates via a looped DNA intermediate. Cascade/Cas3 complexes stall at diverse protein roadblocks, resulting in a double strand break at the stall site. In contrast, Cas1-Cas2 samples DNA transiently via 3D collisions. Moreover, Cas1-Cas2 associates with Cascade and translocates with Cascade/Cas3, forming the PAC. PACs can displace different protein roadblocks, suggesting a mechanism for long-range spacer acquisition. This work provides a molecular basis for the coordinated steps in CRISPR-based adaptive immunity.


Asunto(s)
Actinomycetales/enzimología , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/química , ADN Viral/metabolismo , Multimerización de Proteína , Imagen Individual de Molécula
2.
Cell ; 170(1): 48-60.e11, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666122

RESUMEN

Type I CRISPR systems feature a sequential dsDNA target searching and degradation process, by crRNA-displaying Cascade and nuclease-helicase fusion enzyme Cas3, respectively. Here we present two cryo-EM snapshots of the Thermobifida fusca type I-E Cascade: (1) unwinding 11 bp of dsDNA at the seed-sequence region to scout for sequence complementarity, and (2) further unwinding of the entire protospacer to form a full R-loop. These structures provide the much-needed temporal and spatial resolution to resolve key mechanistic steps leading to Cas3 recruitment. In the early steps, PAM recognition causes severe DNA bending, leading to spontaneous DNA unwinding to form a seed-bubble. The full R-loop formation triggers conformational changes in Cascade, licensing Cas3 to bind. The same process also generates a bulge in the non-target DNA strand, enabling its handover to Cas3 for cleavage. The combination of both negative and positive checkpoints ensures stringent yet efficient target degradation in type I CRISPR-Cas systems.


Asunto(s)
Actinobacteria/genética , Actinobacteria/ultraestructura , Sistemas CRISPR-Cas , Hibridación de Ácido Nucleico , Actinobacteria/química , Actinobacteria/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/ultraestructura , Secuencia de Bases , Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Proteínas Asociadas a CRISPR/ultraestructura , Microscopía por Crioelectrón , Modelos Moleculares , ARN Bacteriano/química , ARN Bacteriano/metabolismo , ARN Pequeño no Traducido/química , ARN Pequeño no Traducido/metabolismo
3.
Cell ; 170(1): 35-47.e13, 2017 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-28666121

RESUMEN

CRISPR-Cas nucleoproteins target foreign DNA via base pairing with a crRNA. However, a quantitative description of protein binding and nuclease activation at off-target DNA sequences remains elusive. Here, we describe a chip-hybridized association-mapping platform (CHAMP) that repurposes next-generation sequencing chips to simultaneously measure the interactions between proteins and ∼107 unique DNA sequences. Using CHAMP, we provide the first comprehensive survey of DNA recognition by a type I-E CRISPR-Cas (Cascade) complex and Cas3 nuclease. Analysis of mutated target sequences and human genomic DNA reveal that Cascade recognizes an extended protospacer adjacent motif (PAM). Cascade recognizes DNA with a surprising 3-nt periodicity. The identity of the PAM and the PAM-proximal nucleotides control Cas3 recruitment by releasing the Cse1 subunit. These findings are used to develop a model for the biophysical constraints governing off-target DNA binding. CHAMP provides a framework for high-throughput, quantitative analysis of protein-DNA interactions on synthetic and genomic DNA. PAPERCLIP.


Asunto(s)
Proteínas de Unión al ADN/análisis , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Unión Proteica , Análisis de Secuencia de ADN/métodos , Sistemas CRISPR-Cas , Ensayo de Cambio de Movilidad Electroforética , Microscopía Fluorescente , Motivos de Nucleótidos
4.
Mol Cell ; 84(3): 463-475.e5, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242128

RESUMEN

Type I CRISPR-Cas systems utilize the RNA-guided Cascade complex to identify matching DNA targets and the nuclease-helicase Cas3 to degrade them. Among the seven subtypes, type I-C is compact in size and highly active in creating large-sized genome deletions in human cells. Here, we use four cryoelectron microscopy snapshots to define its RNA-guided DNA binding and cleavage mechanisms in high resolution. The non-target DNA strand (NTS) is accommodated by I-C Cascade in a continuous binding groove along the juxtaposed Cas11 subunits. Binding of Cas3 further traps a flexible bulge in NTS, enabling NTS nicking. We identified two anti-CRISPR proteins AcrIC8 and AcrIC9 that strongly inhibit Neisseria lactamica I-C function. Structural analysis showed that AcrIC8 inhibits PAM recognition through allosteric inhibition, whereas AcrIC9 achieves so through direct competition. Both Acrs potently inhibit I-C-mediated genome editing and transcriptional modulation in human cells, providing the first off-switches for type I CRISPR eukaryotic genome engineering.


Asunto(s)
Proteínas Asociadas a CRISPR , Edición Génica , Humanos , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , Proteínas Asociadas a CRISPR/metabolismo , ADN/metabolismo , ARN
5.
Cell ; 167(2): 310-312, 2016 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-27716504

RESUMEN

piRNA guides the action of PIWI proteins to silence deleterious transposons in animal reproductive tissues. Biogenesis of piRNA-induced silencing complex (piRISC) involves a multi-step process. In this issue, Matsumoto et al. report the first crystal structure of a PIWI-clade protein displaying a guide RNA, ready for action.


Asunto(s)
Proteínas Argonautas/genética , Proteínas de Drosophila/genética , Animales , Elementos Transponibles de ADN , Drosophila melanogaster/genética , ARN Interferente Pequeño/genética
6.
Mol Cell ; 83(11): 1827-1838.e6, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37267904

RESUMEN

CRISPR-associated transposons (CASTs) are natural RNA-directed transposition systems. We demonstrate that transposon protein TniQ plays a central role in promoting R-loop formation by RNA-guided DNA-targeting modules. TniQ residues, proximal to CRISPR RNA (crRNA), are required for recognizing different crRNA categories, revealing an unappreciated role of TniQ to direct transposition into different classes of crRNA targets. To investigate adaptations allowing CAST elements to utilize attachment sites inaccessible to CRISPR-Cas surveillance complexes, we compared and contrasted PAM sequence requirements in both I-F3b CAST and I-F1 CRISPR-Cas systems. We identify specific amino acids that enable a wider range of PAM sequences to be accommodated in I-F3b CAST elements compared with I-F1 CRISPR-Cas, enabling CAST elements to access attachment sites as sequences drift and evade host surveillance. Together, this evidence points to the central role of TniQ in facilitating the acquisition of CRISPR effector complexes for RNA-guided DNA transposition.


Asunto(s)
Proteínas Asociadas a CRISPR , ARN , ADN/genética , Sistemas CRISPR-Cas , Proteínas Asociadas a CRISPR/genética
7.
Mol Cell ; 82(4): 852-867.e5, 2022 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-35051351

RESUMEN

Leading CRISPR-Cas technologies employ Cas9 and Cas12 enzymes that generate RNA-guided dsDNA breaks. Yet, the most abundant microbial adaptive immune systems, Type I CRISPRs, are under-exploited for eukaryotic applications. Here, we report the adoption of a minimal CRISPR-Cas3 from Neisseria lactamica (Nla) type I-C system to create targeted large deletions in the human genome. RNP delivery of its processive Cas3 nuclease and target recognition complex Cascade can confer ∼95% editing efficiency. Unexpectedly, NlaCascade assembly in bacteria requires internal translation of a hidden component Cas11 from within the cas8 gene. Furthermore, expressing a separately encoded NlaCas11 is the key to enable plasmid- and mRNA-based editing in human cells. Finally, we demonstrate that supplying cas11 is a universal strategy to systematically implement divergent I-C, I-D, and I-B CRISPR-Cas3 editors with compact sizes, distinct PAM preferences, and guide orthogonality. These findings greatly expand our ability to engineer long-range genome edits.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Asociadas a CRISPR/genética , Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Eliminación de Gen , Edición Génica , Genoma Humano , Neisseria lactamica/genética , Proteínas Bacterianas/metabolismo , Proteínas Asociadas a CRISPR/metabolismo , Células HEK293 , Células HeLa , Humanos , Neisseria lactamica/enzimología , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
8.
Mol Cell ; 82(15): 2754-2768.e5, 2022 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-35835111

RESUMEN

Type I CRISPR-Cas systems typically rely on a two-step process to degrade DNA. First, an RNA-guided complex named Cascade identifies the complementary DNA target. The helicase-nuclease fusion enzyme Cas3 is then recruited in trans for processive DNA degradation. Contrary to this model, here, we show that type I-A Cascade and Cas3 function as an integral effector complex. We provide four cryoelectron microscopy (cryo-EM) snapshots of the Pyrococcus furiosus (Pfu) type I-A effector complex in different stages of DNA recognition and degradation. The HD nuclease of Cas3 is autoinhibited inside the effector complex. It is only allosterically activated upon full R-loop formation, when the entire targeted region has been validated by the RNA guide. The mechanistic insights inspired us to convert Pfu Cascade-Cas3 into a high-sensitivity, low-background, and temperature-activated nucleic acid detection tool. Moreover, Pfu CRISPR-Cas3 shows robust bi-directional deletion-editing activity in human cells, which could find usage in allele-specific inactivation of disease-causing mutations.


Asunto(s)
Proteínas Asociadas a CRISPR , Proteínas Asociadas a CRISPR/genética , Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Microscopía por Crioelectrón , ADN/genética , ADN/metabolismo , Endonucleasas/genética , Edición Génica , Humanos , ARN
9.
Nature ; 598(7881): 515-520, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34588691

RESUMEN

Prokaryotes adapt to challenges from mobile genetic elements by integrating spacers derived from foreign DNA in the CRISPR array1. Spacer insertion is carried out by the Cas1-Cas2 integrase complex2-4. A substantial fraction of CRISPR-Cas systems use a Fe-S cluster containing Cas4 nuclease to ensure that spacers are acquired from DNA flanked by a protospacer adjacent motif (PAM)5,6 and inserted into the CRISPR array unidirectionally, so that the transcribed CRISPR RNA can guide target searching in a PAM-dependent manner. Here we provide a high-resolution mechanistic explanation for the Cas4-assisted PAM selection, spacer biogenesis and directional integration by type I-G CRISPR in Geobacter sulfurreducens, in which Cas4 is naturally fused with Cas1, forming Cas4/Cas1. During biogenesis, only DNA duplexes possessing a PAM-embedded 3'-overhang trigger Cas4/Cas1-Cas2 assembly. During this process, the PAM overhang is specifically recognized and sequestered, but is not cleaved by Cas4. This 'molecular constipation' prevents the PAM-side prespacer from participating in integration. Lacking such sequestration, the non-PAM overhang is trimmed by host nucleases and integrated to the leader-side CRISPR repeat. Half-integration subsequently triggers PAM cleavage and Cas4 dissociation, allowing spacer-side integration. Overall, the intricate molecular interaction between Cas4 and Cas1-Cas2 selects PAM-containing prespacers for integration and couples the timing of PAM processing with the stepwise integration to establish directionality.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas , Endonucleasas/metabolismo , Geobacter/enzimología , Bases de Datos Genéticas , Modelos Moleculares , Conformación Molecular , Motivos de Nucleótidos
10.
Mol Cell ; 74(5): 936-950.e5, 2019 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-30975459

RESUMEN

CRISPR-Cas systems enable microbial adaptive immunity and provide eukaryotic genome editing tools. These tools employ a single effector enzyme of type II or V CRISPR to generate RNA-guided, precise genome breaks. Here we demonstrate the feasibility of using type I CRISPR-Cas to effectively introduce a spectrum of long-range chromosomal deletions with a single RNA guide in human embryonic stem cells and HAP1 cells. Type I CRISPR systems rely on the multi-subunit ribonucleoprotein (RNP) complex Cascade to identify DNA targets and on the helicase-nuclease enzyme Cas3 to degrade DNA processively. With RNP delivery of T. fusca Cascade and Cas3, we obtained 13%-60% editing efficiency. Long-range PCR-based and high-throughput-sequencing-based lesion analyses reveal that a variety of deletions, ranging from a few hundred base pairs to 100 kilobases, are created upstream of the target site. These results highlight the potential utility of type I CRISPR-Cas for long-range genome manipulations and deletion screens in eukaryotes.


Asunto(s)
Sistemas CRISPR-Cas/genética , Células Madre Embrionarias Humanas , ARN Guía de Kinetoplastida/genética , Eliminación de Secuencia/genética , Endonucleasas/química , Endonucleasas/genética , Escherichia coli/genética , Edición Génica/métodos , Genoma Humano/genética , Genómica , Humanos , Ribonucleoproteínas/genética
11.
Nat Chem Biol ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38977787

RESUMEN

OMEGA RNA (ωRNA)-guided endonuclease IscB, the evolutionary ancestor of Cas9, is an attractive system for in vivo genome editing because of its compact size and mechanistic resemblance to Cas9. However, wild-type IscB-ωRNA systems show limited activity in human cells. Here we report enhanced OgeuIscB, which, with eight amino acid substitutions, displayed a fourfold increase in in vitro DNA-binding affinity and a 30.4-fold improvement in insertion-deletion (indel) formation efficiency in human cells. Paired with structure-guided ωRNA engineering, the enhanced OgeuIscB-ωRNA systems efficiently edited the human genome across 26 target sites, attaining up to 87.3% indel and 62.2% base-editing frequencies. Both wild-type and engineered OgeuIscB-ωRNA showed moderate fidelity in editing the human genome, with off-target profiles revealing key determinants of target selection including an NARR target-adjacent motif (TAM) and the TAM-proximal 14 nucleotides in the R-loop. Collectively, our engineered OgeuIscB-ωRNA systems are programmable, potent and sufficiently specific for human genome editing.

12.
Mol Cell ; 65(3): 377-379, 2017 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-28157502

RESUMEN

Adaptation of CRISPR-Cas9 for genome-editing applications has revolutionized biomedical research. New single-component effector CRISPR systems are emerging from the bioinformatics pipeline. How can we best harness their power? Three new studies will no doubt facilitate this transition by generating the C2c1 and C2c2 structure snapshots in different functional states.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Proteínas Asociadas a CRISPR/química , Ingeniería Genética/métodos , Modelos Moleculares
13.
Nature ; 550(7674): 137-141, 2017 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-28869593

RESUMEN

CRISPR (clustered regularly interspaced short palindromic repeats) and the nearby Cas (CRISPR-associated) operon establish an RNA-based adaptive immunity system in prokaryotes. Molecular memory is created when a short foreign DNA-derived prespacer is integrated into the CRISPR array as a new spacer. Whereas the RNA-guided CRISPR interference mechanism varies widely among CRISPR-Cas systems, the spacer integration mechanism is essentially identical. The conserved Cas1 and Cas2 proteins form an integrase complex consisting of two distal Cas1 dimers bridged by a Cas2 dimer. The prespacer is bound by Cas1-Cas2 as a dual-forked DNA, and the terminal 3'-OH of each 3' overhang serves as an attacking nucleophile during integration. The prespacer is preferentially integrated into the leader-proximal region of the CRISPR array, guided by the leader sequence and a pair of inverted repeats inside the CRISPR repeat. Spacer integration in the well-studied Escherichia coli type I-E CRISPR system also relies on the bacterial integration host factor. In type II-A CRISPR, however, Cas1-Cas2 alone integrates spacers efficiently in vitro; other Cas proteins (such as Cas9 and Csn2) have accessory roles in the biogenesis phase of prespacers. Here we present four structural snapshots from the type II-A system of Enterococcus faecalis Cas1 and Cas2 during spacer integration. Enterococcus faecalis Cas1-Cas2 selectively binds to a splayed 30-base-pair prespacer bearing 4-nucleotide 3' overhangs. Three molecular events take place upon encountering a target: first, the Cas1-Cas2-prespacer complex searches for half-sites stochastically, then it preferentially interacts with the leader-side CRISPR repeat, and finally, it catalyses a nucleophilic attack that connects one strand of the leader-proximal repeat to the prespacer 3' overhang. Recognition of the spacer half-site requires DNA bending and leads to full integration. We derive a mechanistic framework to explain the stepwise spacer integration process and the leader-proximal preference.


Asunto(s)
Proteínas Asociadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Sistemas CRISPR-Cas/inmunología , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Enterococcus faecalis , Proteínas Asociadas a CRISPR/química , ADN/química , ADN/metabolismo , Enterococcus faecalis/genética , Enterococcus faecalis/inmunología , Escherichia coli/genética , Integrasas/química , Integrasas/metabolismo , Modelos Moleculares
14.
Mol Cell ; 57(6): 1110-1123, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25794619

RESUMEN

Gene regulation in cis by riboswitches is prevalent in bacteria. The yybP-ykoY riboswitch family is quite widespread, yet its ligand and function remained unknown. Here, we characterize the Lactococcus lactis yybP-ykoY orphan riboswitch as a Mn(2+)-dependent transcription-ON riboswitch, with a ∼30-40 µM affinity for Mn(2+). We further determined its crystal structure at 2.7 Å to elucidate the metal sensing mechanism. The riboswitch resembles a hairpin, with two coaxially stacked helices tethered by a four-way junction and a tertiary docking interface. The Mn(2+)-sensing region, strategically located at the highly conserved docking interface, has two metal binding sites. Whereas one site tolerates the binding of either Mg(2+) or Mn(2+), the other site strongly prefers Mn(2+) due to a direct contact from the N7 of an invariable adenosine. Mutagenesis and a Mn(2+)-free E. coli yybP-ykoY structure further reveal that Mn(2+) binding is coupled with stabilization of the Mn(2+)-sensing region and the aptamer domain.


Asunto(s)
Escherichia coli/genética , Lactococcus lactis/genética , Magnesio/metabolismo , ARN Bacteriano/química , Secuencias Reguladoras de Ácido Ribonucleico , Riboswitch/fisiología , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/genética , Secuencia de Bases , Cristalografía por Rayos X , Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Lactococcus lactis/metabolismo , Magnesio/toxicidad , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Conformación de Ácido Nucleico , Percepción de Quorum , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
15.
Nature ; 530(7591): 499-503, 2016 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-26863189

RESUMEN

Clustered regularly interspaced short palindromic repeats (CRISPRs) and the cas (CRISPR-associated) operon form an RNA-based adaptive immune system against foreign genetic elements in prokaryotes. Type I accounts for 95% of CRISPR systems, and has been used to control gene expression and cell fate. During CRISPR RNA (crRNA)-guided interference, Cascade (CRISPR-associated complex for antiviral defence) facilitates the crRNA-guided invasion of double-stranded DNA for complementary base-pairing with the target DNA strand while displacing the non-target strand, forming an R-loop. Cas3, which has nuclease and helicase activities, is subsequently recruited to degrade two DNA strands. A protospacer adjacent motif (PAM) sequence flanking target DNA is crucial for self versus foreign discrimination. Here we present the 2.45 Å crystal structure of Escherichia coli Cascade bound to a foreign double-stranded DNA target. The 5'-ATG PAM is recognized in duplex form, from the minor groove side, by three structural features in the Cascade Cse1 subunit. The promiscuity inherent to minor groove DNA recognition rationalizes the observation that a single Cascade complex can respond to several distinct PAM sequences. Optimal PAM recognition coincides with wedge insertion, initiating directional target DNA strand unwinding to allow segmented base-pairing with crRNA. The non-target strand is guided along a parallel path 25 Å apart, and the R-loop structure is further stabilized by locking this strand behind the Cse2 dimer. These observations provide the structural basis for understanding the PAM-dependent directional R-loop formation process.


Asunto(s)
Proteínas Asociadas a CRISPR/química , Proteínas Asociadas a CRISPR/metabolismo , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , ADN/química , ADN/metabolismo , Escherichia coli/química , ARN Bacteriano/química , Emparejamiento Base , Secuencia de Bases , Cristalografía por Rayos X , ADN Helicasas/química , ADN Helicasas/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Conformación Molecular , Datos de Secuencia Molecular , Complejos Multiproteicos/química , Complejos Multiproteicos/metabolismo , Motivos de Nucleótidos , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , ARN Bacteriano/genética , ARN Bacteriano/metabolismo
16.
Nucleic Acids Res ; 47(18): 9818-9828, 2019 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-31396619

RESUMEN

Packaging of phage phi29 genome requires the ATPase gp16 and prohead RNA (pRNA). The highly conserved pRNA forms the interface between the connector complex and gp16. Understanding how pRNA interacts with gp16 under packaging conditions can shed light on the molecular mechanism of the packaging motor. Here, we present 3D models of the pRNA-gp16 complex and its conformation change in response to ATP or ADP binding. Using a combination of crystallography, small angle X-ray scattering and chemical probing, we find that the pRNA and gp16 forms a 'Z'-shaped complex, with gp16 specifically binds to pRNA domain II. The whole complex closes in the presence of ATP, and pRNA domain II rotates open as ATP hydrolyzes, before resetting after ADP is released. Our results suggest that pRNA domain II actively participates in the packaging process.


Asunto(s)
Fagos de Bacillus/genética , Empaquetamiento del ADN/genética , ARN Viral/genética , Proteínas Virales/genética , Adenosina Difosfato/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfato/genética , Sitios de Unión , Cristalografía por Rayos X , ADN Viral/genética , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Conformación de Ácido Nucleico , ARN Viral/química , Dispersión del Ángulo Pequeño , Transducción de Señal/genética , Proteínas Virales/química , Ensamble de Virus/genética
17.
RNA ; 23(4): 578-585, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28096518

RESUMEN

Regulation of gene expression by cis-encoded riboswitches is a prevalent theme in bacteria. Of the hundreds of riboswitch families identified, the majority of them remain as orphans, without a clear ligand assignment. The ykkC orphan family was recently characterized as guanidine-sensing riboswitches. Herein we present a 2.3 Å crystal structure of the guanidine-bound ykkC riboswitch from Dickeya dadantii The riboswitch folds into a boot-shaped structure, with a coaxially stacked P1/P2 stem forming the boot, and a 3'-P3 stem-loop forming the heel. Sophisticated base-pairing and cross-helix tertiary contacts give rise to the ligand-binding pocket between the boot and the heel. The guanidine is recognized in its positively charged guanidinium form, in its sp2 hybridization state, through a network of coplanar hydrogen bonds and by a cation-π stacking contact on top of a conserved guanosine residue. Disruption of these contacts resulted in severe guanidinium-binding defects. These results provide the structural basis for specific guanidine sensing by ykkC riboswitches and pave the way for a deeper understanding of guanidine detoxification-a previously unappreciated aspect of bacterial physiology.


Asunto(s)
Enterobacteriaceae/química , Guanidina/química , ARN Bacteriano/química , Riboswitch/genética , Emparejamiento Base , Sitios de Unión , Cristalografía por Rayos X , Enterobacteriaceae/genética , Enterobacteriaceae/metabolismo , Guanidina/metabolismo , Enlace de Hidrógeno , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Bacteriano/metabolismo , Electricidad Estática , Termodinámica
18.
Biochim Biophys Acta Proteins Proteom ; 1865(10): 1237-1245, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28648523

RESUMEN

Thermostable α-amylases have many industrial applications and are therefore continuously explored from novel sources. We present the characterization of a novel putative α-amylase gene product (Tp-AmyS) cloned from Thermotoga petrophila. The purified recombinant enzyme is highly thermostable and able to hydrolyze starch into dextrin between 90 and 100°C, with optimum activity at 98°C and pH8.5. The activity increased in the presence of Rb1+, K1+ and Ca2+ ions, whereas other ions inhibited activity. The crystal structure of Tp-AmyS at 1.7Å resolution showed common features of the GH-13 family, however was apparently found to be a dimer. Several residues from one monomer interacted with a docked acarbose, an inhibitor of Tp-AmyS, in the other monomer, suggesting catalytic cooperativity within the dimer. The most striking feature of the dimer was that it resembled the dimerization of salivary amylase from a previous crystal structure, and thus could be a functional feature of some amylases.


Asunto(s)
Bacterias/química , Proteínas Bacterianas/química , alfa-Amilasas/química , Catálisis , Clonación Molecular/métodos , Dextrinas/química , Dimerización , Estabilidad de Enzimas , Estabilidad Proteica , Proteínas Recombinantes/química , Especificidad por Sustrato , Temperatura
19.
Proc Natl Acad Sci U S A ; 111(9): 3573-8, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24550474

RESUMEN

Anti-Q is a small RNA encoded on pCF10, an antibiotic resistance plasmid of Enterococcus faecalis, which negatively regulates conjugation of the plasmid. In this study we sought to understand how Anti-Q is generated relative to larger transcripts of the same operon. We found that Anti-Q folds into a branched structure that functions as a factor-independent terminator. In vitro and in vivo, termination is dependent on the integrity of this structure as well as the presence of a 3' polyuridine tract, but is not dependent on other downstream sequences. In vitro, terminated transcripts are released from RNA polymerase after synthesis. In vivo, a mutant with reduced termination efficiency demonstrated loss of tight control of conjugation function. A search of bacterial genomes revealed the presence of sequences that encode Anti-Q-like RNA structures. In vitro and in vivo experiments demonstrated that one of these functions as a terminator. This work reveals a previously unappreciated flexibility in the structure of factor-independent terminators and identifies a mechanism for generation of functional small RNAs; it should also inform annotation of bacterial sequence features, such as terminators, functional sRNAs, and operons.


Asunto(s)
Conjugación Genética/fisiología , Enterococcus faecalis/genética , Plásmidos/genética , ARN Bacteriano/genética , Transcripción Genética/genética , Secuencia de Bases , Northern Blotting , Western Blotting , Conjugación Genética/genética , Datos de Secuencia Molecular , Mutagénesis , Pliegue del ARN/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Regiones Terminadoras Genéticas/genética
20.
Proc Natl Acad Sci U S A ; 110(18): 7240-5, 2013 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-23589841

RESUMEN

The T box leader sequence is an RNA element that controls gene expression by binding directly to a specific tRNA and sensing its aminoacylation state. This interaction controls expression of amino acid-related genes in a negative feedback loop. The T box RNA structure is highly conserved, but its tRNA binding mechanism is only partially understood. Known sequence elements are the specifier sequence, which recognizes the tRNA anticodon, and the antiterminator bulge, which base pairs with the tRNA acceptor end. Here, we reveal the crucial function of the highly conserved stem I distal region in tRNA recognition and report its 2.65-Å crystal structure. The apex of this region contains an intricately woven loop-loop interaction between two conserved motifs, the Adenine-guanine (AG) bulge and the distal loop. This loop-loop structure presents a base triple on its surface that is optimally positioned for base-stacking interactions. Mutagenesis, cross-linking, and small-angle X-ray scattering data demonstrate that the apical base triple serves as a binding platform to dock the tRNA D- and T-loops. Strikingly, the binding platform strongly resembles the D- and T-loop binding elements from RNase P and the ribosome exit site, suggesting that this loop-loop structure may represent a widespread tRNA recognition platform. We propose a two-checkpoint molecular ruler model for tRNA decoding in which the information content of tRNA is first examined through specifier sequence-anticodon interaction, and the length of the tRNA anticodon arm is then measured by the distal loop-loop platform. When both conditions are met, tRNA is secured, and its aminoacylation state is sensed.


Asunto(s)
Regulación de la Expresión Génica , ARN de Transferencia/química , ARN de Transferencia/genética , Secuencias Reguladoras de Ácido Ribonucleico/genética , Secuencia de Bases , Cromatografía en Gel , Biología Computacional , Reactivos de Enlaces Cruzados , Cristalografía por Rayos X , Cartilla de ADN/metabolismo , Regulación de la Expresión Génica/efectos de la radiación , Hidroxilación/efectos de la radiación , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis/genética , Mutagénesis/efectos de la radiación , Conformación de Ácido Nucleico , Ribonucleasa P/metabolismo , Dispersión del Ángulo Pequeño , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA