Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Metab Eng Commun ; 13: e00172, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34430202

RESUMEN

Lichen-forming fungi produce a variety of secondary metabolites including bioactive polyketides. Advances in DNA and RNA sequencing have led to a growing database of new lichen gene clusters encoding polyketide synthases (PKS) and associated ancillary activities. Definitive assignment of a PKS gene to a metabolic product has been challenging in the lichen field due to a lack of established gene knockout or heterologous gene expression systems. Here, we report the reconstitution of a non-reducing PKS gene from the lichen Pseudevernia furfuracea and successful heterologous expression of the synthetic lichen PKS gene in engineered Saccharomyces cerevisiae. We show that P. furfuracea PFUR17_02294 produces lecanoric acid, the depside dimer of orsellinic acid, at 360 mg/L in small-scale yeast cultures. Our results unequivocally identify PFUR17_02294 as a lecanoric acid synthase and establish that a single lichen PKS synthesizes two phenolic rings and joins them by an ester linkage to form the depside product.

2.
Anal Biochem ; 394(1): 75-80, 2009 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-19595983

RESUMEN

A sensitive fluorescent assay was developed to measure the extent of phosphopantetheinylation of polyketide synthase (PKS) acyl carrier protein (ACP) domains in polyketide production strains. The in vitro assay measures PKS fluorescence after transfer of fluorescently labeled phosphopantetheine from coenzyme A to PKS ACP domains in crude protein extracts. The assay was used to determine the extent of phosphopantetheinylation of ACP domains of the erythromycin precursor polyketide synthase, 6-deoxyerythronolide B synthase (DEBS), expressed in a heterologous Escherichia coli polyketide production strain. The data showed that greater than 99.9% of DEBS is phosphopantetheinylated. The assay was also used to interrogate the extent of phosphopantetheinylation of the lovastatin nonaketide synthase (LNKS) heterologously expressed in Saccharomyces cerevisiae. The data showed that LNKS was efficiently phosphopantetheinylated in S. cerevisiae and that lack of production of the lovastatin precursor polyketide was not due to insufficient phosphopantetheinylation of the expressed synthase.


Asunto(s)
Escherichia coli/genética , Panteteína/análogos & derivados , Sintasas Poliquetidas/biosíntesis , Sintasas Poliquetidas/metabolismo , Saccharomyces cerevisiae/genética , Proteína Transportadora de Acilo/metabolismo , Aciltransferasas/metabolismo , Proteínas Bacterianas/metabolismo , Biocatálisis , Escherichia coli/metabolismo , Colorantes Fluorescentes/metabolismo , Expresión Génica , Ligasas/metabolismo , Lovastatina/metabolismo , Macrólidos/metabolismo , Complejos Multienzimáticos/metabolismo , Oxidorreductasas/metabolismo , Panteteína/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Estructura Terciaria de Proteína , Transferasas (Grupos de Otros Fosfatos Sustitutos)/metabolismo
3.
Appl Environ Microbiol ; 74(16): 5121-9, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-18567690

RESUMEN

Gene clusters for biosynthesis of the fungal polyketides hypothemycin and radicicol from Hypomyces subiculosus and Pochonia chlamydosporia, respectively, were sequenced. Both clusters encode a reducing polyketide synthase (PKS) and a nonreducing PKS like those in the zearalenone cluster of Gibberella zeae, plus enzymes with putative post-PKS functions. Introduction of an O-methyltransferase (OMT) knockout construct into H. subiculosus resulted in a strain with increased production of 4-O-desmethylhypothemycin, but because transformation of H. subiculosus was very difficult, we opted to characterize hypothemycin biosynthesis using heterologous gene expression. In vitro, the OMT could methylate various substrates lacking a 4-O-methyl group, and the flavin-dependent monooxygenase (FMO) could epoxidate substrates with a 1',2' double bond. The glutathione S-transferase catalyzed cis-trans isomerization of the 7',8' double bond of hypothemycin. Expression of both hypothemycin PKS genes (but neither gene alone) in yeast resulted in production of trans-7',8'-dehydrozearalenol (DHZ). Adding expression of OMT, expression of FMO, and expression of cytochrome P450 to the strain resulted in methylation, 1',2'-epoxidation, and hydroxylation of DHZ, respectively. The radicicol gene cluster encodes halogenase and cytochrome P450 homologues that are presumed to catalyze chlorination and epoxidation, respectively. Schemes for biosynthesis of hypothemycin and radicicol are proposed. The PKSs encoded by the two clusters described above and those encoded by the zearalenone cluster all synthesize different products, yet they have significant sequence identity. These PKSs may provide a useful system for probing the mechanisms of fungal PKS programming.


Asunto(s)
Genes Fúngicos , Hypocreales/genética , Macrólidos/metabolismo , Sintasas Poliquetidas/genética , Secuencia de Bases , Clonación Molecular , ADN de Hongos/genética , Escherichia coli/enzimología , Regulación Fúngica de la Expresión Génica , Vectores Genéticos , Biblioteca Genómica , Hypocreales/enzimología , Hypocreales/metabolismo , Datos de Secuencia Molecular , Familia de Multigenes , Sintasas Poliquetidas/metabolismo , Saccharomyces cerevisiae/enzimología , Análisis de Secuencia de ADN , Zearalenona/análogos & derivados , Zearalenona/biosíntesis
4.
Front Biosci ; 8: c1-13, 2003 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-12456305

RESUMEN

Modular polyketide synthases (PKS) are large multifunctional enzymes that synthesize complex polyketides, a therapeutically important class of natural products. The linear order and composition of catalytic sites that comprise the PKS represent a "code" that determines the identity of the polyketide product. By re-programming the PKS through genetic engineering, it is possible to alter the code in a predictable manner to create specific structural modifications of polyketides and to produce new libraries of these natural products.


Asunto(s)
Complejos Multienzimáticos/biosíntesis , Complejos Multienzimáticos/genética , Ingeniería de Proteínas/métodos , Secuencia de Carbohidratos/genética , Epotilonas/química , Epotilonas/genética , Eritromicina/química , Eritromicina/metabolismo , Estructura Molecular , Complejos Multienzimáticos/química , Complejos Multienzimáticos/fisiología , Péptidos/química , Péptidos/genética , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Sirolimus/química , Sirolimus/metabolismo
5.
Science ; 326(5952): 589-92, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19900898

RESUMEN

Highly reducing iterative polyketide synthases are large, multifunctional enzymes that make important metabolites in fungi, such as lovastatin, a cholesterol-lowering drug from Aspergillus terreus. We report efficient expression of the lovastatin nonaketide synthase (LovB) from an engineered strain of Saccharomyces cerevisiae, as well as complete reconstitution of its catalytic function in the presence and absence of cofactors (the reduced form of nicotinamide adenine dinucleotide phosphate and S-adenosylmethionine) and its partner enzyme, the enoyl reductase LovC. Our results demonstrate that LovB retains correct intermediates until completion of synthesis of dihydromonacolin L, but off-loads incorrectly processed compounds as pyrones or hydrolytic products. Experiments replacing LovC with analogous MlcG from compactin biosynthesis demonstrate a gate-keeping function for this partner enzyme. This study represents a key step in the understanding of the functions and structures of this family of enzymes.


Asunto(s)
Naftalenos/metabolismo , Sintasas Poliquetidas/metabolismo , Saccharomyces cerevisiae/genética , Aspergillus/enzimología , Aspergillus/genética , Aspergillus/metabolismo , Biocatálisis , Dominio Catalítico , Clonación Molecular , Proteínas Fúngicas/metabolismo , Cetonas/metabolismo , Lactonas/metabolismo , Lovastatina/biosíntesis , Malonil Coenzima A/metabolismo , Estructura Molecular , Complejos Multienzimáticos/metabolismo , NAD/metabolismo , Sintasas Poliquetidas/química , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/aislamiento & purificación , Pironas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , S-Adenosilmetionina/metabolismo , Saccharomyces cerevisiae/enzimología , Especificidad por Sustrato
6.
FEMS Yeast Res ; 6(1): 40-7, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16423069

RESUMEN

Polyketides are a diverse group of natural products with significance in human and veterinary medicine. Because polyketides are structurally complex molecules and fermentation is the most commercially viable route of production, a generic heterologous host system for high-level polyketide production is desirable. Saccharomyces cerevisiae has been shown to be an excellent production host for a simple polyketide, yielding 1.7 g of 6-methylsalicylic acid per liter of culture in un-optimized shake-flask fermentations. However, a barrier to the heterologous production of more complex 'modular' polyketides in S. cerevisiae is the lack of required polyketide precursor pathways. In this work, we describe the introduction into S. cerevisiae of pathways for the production of methylmalonyl-coenzyme A (CoA), a precursor for complex polyketides, by both propionyl-CoA-dependent and propionyl-CoA-independent routes. Furthermore, we demonstrate that the methylmalonyl-CoA produced in the engineered yeast strains is used in vivo for the production of a polyketide product, a triketide lactone.


Asunto(s)
Ingeniería Genética/métodos , Macrólidos/metabolismo , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Saccharomyces cerevisiae/genética , Acilcoenzima A/metabolismo , Regulación Fúngica de la Expresión Génica , Macrólidos/química , Metilmalonil-CoA Descarboxilasa/genética , Metilmalonil-CoA Descarboxilasa/metabolismo , Saccharomyces cerevisiae/enzimología , Salmonella typhimurium/enzimología , Salmonella typhimurium/genética , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/genética
7.
J Ind Microbiol Biotechnol ; 33(1): 22-8, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16187094

RESUMEN

A generic design of Type I polyketide synthase genes has been reported in which modules, and domains within modules, are flanked by sets of unique restriction sites that are repeated in every module [1]. Using the universal design, we synthesized the six-module DEBS gene cluster optimized for codon usage in E. coli, and cloned the three open reading frames into three compatible expression vectors. With one correctable exception, the amino acid substitutions required for restriction site placements were compatible with polyketide production. When expressed in E. coli the codon-optimized synthetic gene cluster produced significantly more protein than did the wild-type sequence. Indeed, for optimal polyketide production, PKS expression had to be down-regulated by promoter attenuation to achieve balance with expression of the accessory proteins needed to support polyketide biosynthesis.


Asunto(s)
Escherichia coli/genética , Familia de Multigenes , Sintasas Poliquetidas/genética , Escherichia coli/enzimología , Regulación Bacteriana de la Expresión Génica/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Genes Bacterianos/genética , Complejos Multienzimáticos/metabolismo , Plásmidos/genética , Sintasas Poliquetidas/metabolismo
8.
Appl Environ Microbiol ; 71(8): 4503-9, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16085842

RESUMEN

Chemobiosynthesis (J. R. Jacobsen, C. R. Hutchinson, D. E. Cane, and C. Khosla, Science 277:367-369, 1997) is an important route for the production of polyketide analogues and has been used extensively for the production of analogues of 6-deoxyerythronolide B (6-dEB). Here we describe a new route for chemobiosynthesis using a version of 6-deoxyerythronolide B synthase (DEBS) that lacks the loading module. When the engineered DEBS was expressed in both Escherichia coli and Streptomyces coelicolor and fed a variety of acyl-thioesters, several novel 15-R-6-dEB analogues were produced. The simpler "monoketide" acyl-thioester substrates required for this route of 15-R-6-dEB chemobiosynthesis allow greater flexibility and provide a cost-effective alternative to diketide-thioester feeding to DEBS KS1(o) for the production of 15-R-6-dEB analogues. Moreover, the facile synthesis of the monoketide acyl-thioesters allowed investigation of alternative thioester carriers. Several alternatives to N-acetyl cysteamine were found to work efficiently, and one of these, methyl thioglycolate, was verified as a productive thioester carrier for mono- and diketide feeding in both E. coli and S. coelicolor.


Asunto(s)
Eritromicina/análogos & derivados , Escherichia coli/enzimología , Ingeniería Genética/métodos , Mutación , Sintasas Poliquetidas/genética , Streptomyces coelicolor/enzimología , Medios de Cultivo , Eritromicina/biosíntesis , Eritromicina/química , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Microbiología Industrial/métodos , Espectroscopía de Resonancia Magnética , Sintasas Poliquetidas/metabolismo , Streptomyces coelicolor/genética , Streptomyces coelicolor/crecimiento & desarrollo , Tioglicolatos/metabolismo
9.
Anal Biochem ; 327(1): 91-6, 2004 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-15033515

RESUMEN

l-Aspartate-alpha-decarboxylase (PanD) catalyzes the decarboxylation of aspartate to produce beta-alanine, a precursor of Coenzyme A (CoA). The pyruvoyl-dependent enzyme from Escherichia coli is activated by self-cleavage at serine 25 to generate a 102-residue alpha subunit with the pyruvoyl group at its N terminus and a 24-residue beta subunit with a hydroxy at its C terminus. A mutant form of the panD gene from E. coli in which serine 25 was replaced with an alanine (S25A) was constructed. Assays conducted in vitro and in vivo confirmed that the mutant version was completely inactive and was incapable of undergoing self-cleavage to generate the active form of the enzyme. The S25A panD mutant was used to replace the chromosomal copy of panD in BAP1, a strain of E. coli modified for polyketide production. Comparison of this strain with panD2 mutant strains derived from E. coli SJ16 showed an equivalent dependence on exogenous beta-alanine for growth in liquid medium. Unlike the undefined and leaky panD2 mutation, the panD S25A mutation is defined and tight. The panD S25A E. coli strain enables analysis of intracellular acyl-CoA pools in both defined and complex media and is a useful tool in metabolic engineering studies that require the manipulation of acyl-CoA pools for the heterologous production of polyketides.


Asunto(s)
Acilcoenzima A/biosíntesis , Eritromicina/análogos & derivados , Escherichia coli/genética , Escherichia coli/metabolismo , Glutamato Descarboxilasa/genética , Mutación Puntual , Ingeniería de Proteínas , Acilcoenzima A/metabolismo , Sustitución de Aminoácidos , Eritromicina/biosíntesis , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Glutamato Descarboxilasa/metabolismo , Macrólidos/metabolismo , beta-Alanina/metabolismo
10.
Biochemistry ; 42(48): 14342-8, 2003 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-14640703

RESUMEN

The erythromycin precursor polyketide 6-deoxyerythronolide B (6-dEB) is produced from one propionyl-CoA starter unit and six (2S)-methylmalonyl-CoA extender units. In vitro studies have previously demonstrated that the loading module of 6-deoxyerythronolide B synthase (DEBS) exhibits relaxed substrate specificity and is able to accept butyryl-CoA, leading to the production of polyketides with butyrate starter units. We have shown that we can produce butyryl-CoA at levels of up to 50% of the total CoA pool in Escherichia coli cells that overexpress the acetoacetyl-CoA:acetyl-CoA transferase, AtoAD (EC 2.8.3.8), in media supplemented with butyrate. The DEBS polyketide synthase (PKS) used butyryl-CoA and methylmalonyl-CoA supplied in vivo by the AtoAD and methylmalonyl-CoA mutase pathways, respectively, to produce 15-methyl-6-dEB. Priming DEBS with endogenous butyryl-CoA affords an alternative and more direct route to 15-Me-6-dEB than that provided by the chemobiosynthesis method [Jacobsen, J. R., et al. (1997) Science 277, 367-369], which relies on priming a mutant DEBS with an exogenously fed diketide thioester. The approach described here demonstrates the utility of metabolic engineering in E. coli to introduce precursor pathways for the production of novel polyketides.


Asunto(s)
Eritromicina/análogos & derivados , Eritromicina/biosíntesis , Proteínas de Escherichia coli , Escherichia coli/metabolismo , Ingeniería Genética/métodos , Acetoacetatos/metabolismo , Acilcoenzima A/biosíntesis , Acilcoenzima A/deficiencia , Acilcoenzima A/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Bacteriocinas , Butiratos/metabolismo , ADN Glicosilasas/biosíntesis , ADN Glicosilasas/genética , Proteínas de Unión al ADN/biosíntesis , Proteínas de Unión al ADN/genética , Eritromicina/metabolismo , Escherichia coli/enzimología , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Complejos Multienzimáticos/metabolismo , Péptidos/genética , Plásmidos , Racemasas y Epimerasas/biosíntesis , Racemasas y Epimerasas/genética
11.
J Ind Microbiol Biotechnol ; 30(8): 500-9, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12898389

RESUMEN

Escherichia coli is an attractive candidate as a host for polyketide production and has been engineered to produce the erythromycin precursor polyketide 6-deoxyerythronolide B (6dEB). In order to identify and optimize parameters that affect polyketide production in engineered E. coli, we first investigated the supply of the extender unit ( 2S)-methylmalonyl-CoA via three independent pathways. Expression of the Streptomyces coelicolor malonyl/methylmalonyl-CoA ligase ( matB) pathway in E. coli together with methylmalonate feeding resulted in the accumulation of intracellular methylmalonyl-CoA to as much as 90% of the acyl-CoA pool. Surprisingly, the methylmalonyl-CoA generated from the matB pathway was not converted into 6dEB. In strains expressing either the S. coelicolor propionyl-CoA carboxylase (PCC) pathway or the Propionibacteria shermanii methylmalonyl-CoA mutase/epimerase pathway, methylmalonyl-CoA accumulated up to 30% of the total acyl-CoA pools, and 6dEB was produced; titers were fivefold higher when strains contained the PCC pathway rather than the mutase pathway. When the PCC and mutase pathways were expressed simultaneously, the PCC pathway predominated, as indicated by greater flux of (13)C-propionate into 6dEB through the PCC pathway. To further optimize the E. coli production strain, we improved 6dEB titers by integrating the PCC and mutase pathways into the E. coli chromosome and by expressing the 6-deoxyerythronolide B synthase (DEBS) genes from a stable plasmid system.


Asunto(s)
Eritromicina/análogos & derivados , Eritromicina/biosíntesis , Escherichia coli/metabolismo , Microbiología Industrial/métodos , Biología Molecular/métodos , Complejos Multienzimáticos/metabolismo , Acilcoenzima A/metabolismo , Isótopos de Carbono , Cromosomas Bacterianos , Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Transferasas Intramoleculares/metabolismo , Complejos Multienzimáticos/genética , Plásmidos , Propionatos/farmacocinética
12.
J Biol Chem ; 277(11): 8835-40, 2002 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-11779873

RESUMEN

An Escherichia coli open reading frame, ygcA, was identified as a putative 23 S ribosomal RNA 5-methyluridine methyltransferase (Gustafsson, C., Reid, R., Greene, P. J., and Santi, D. V. (1996) Nucleic Acids Res. 24, 3756-3762). We have cloned, expressed, and purified the 50-kDa protein encoded by ygcA. The purified enzyme catalyzed the AdoMet-dependent methylation of 23 S rRNA but did not act upon 16 S rRNA or tRNA. A high performance liquid chromatography-based nucleoside analysis identified the reaction product as 5-methyluridine. The enzyme specifically methylated U1939 as determined by a nuclease protection assay and by methylation assays using site-specific mutants of 23 S rRNA. A 40-nucleotide 23 S rRNA fragment (nucleotide 1930--1969) also served as an efficient substrate for the enzyme. The apparent K(m) values for the 40-mer RNA oligonucleotide and AdoMet were 3 and 26 microm, respectively, and the apparent k(cat) was 0.06 s(-1). The enzyme contains two equivalents of iron/monomer and has a sequence motif similar to a motif found in iron-sulfur proteins. We propose to name this gene rumA and accordingly name the protein product as RumA for RNA uridine methyltransferase.


Asunto(s)
Proteínas Bacterianas/metabolismo , Escherichia coli/enzimología , ARN Ribosómico 23S/metabolismo , Uridina/análogos & derivados , Uridina/metabolismo , ARNt Metiltransferasas/metabolismo , Clonación Molecular , Metilación , ARNt Metiltransferasas/genética , ARNt Metiltransferasas/aislamiento & purificación
13.
Biochemistry ; 41(16): 5193-201, 2002 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-11955068

RESUMEN

A barrier to heterologous production of complex polyketides in Escherichia coli is the lack of (2S)-methylmalonyl-CoA, a common extender substrate for the biosynthesis of complex polyketides by modular polyketide synthases. One biosynthetic route to (2S)-methylmalonyl-CoA involves the sequential actions of two enzymes, methylmalonyl-CoA mutase and methylmalonyl-CoA epimerase, which convert succinyl-CoA to (2R)- and then to (2S)-methylmalonyl-CoA. As reported [McKie, N., et al. (1990) Biochem. J. 269, 293-298; Haller, T., et al. (2000) Biochemistry 39, 4622-4629], when genes encoding coenzyme B(12)-dependent methylmalonyl-CoA mutases were expressed in E. coli, the inactive apo-enzyme was produced. However, when cells harboring the mutase genes from Propionibacterium shermanii or E. coli were treated with the B12 precursor hydroxocobalamin, active holo-enzyme was isolated, and (2R)-methylmalonyl-CoA represented approximately 10% of the intracellular CoA pool. When the E. coli BAP1 cell line [Pfeifer, B. A., et al. (2001) Science 291, 1790-1792] harboring plasmids that expressed P. shermanii methylmalonyl-CoA mutase, Streptomyces coelicolor methylmalonyl-CoA epimerase, and the polyketide synthase DEBS (6-deoxyerythronolide B synthase) was fed propionate and hydroxocobalamin, the polyketide 6-deoxyerythronolide B (6-dEB) was produced. Isotopic labeling studies using [(13)C]propionate showed that the starter unit for polyketide synthesis was derived exclusively from exogenous propionate, while the extender units stemmed from methylmalonyl-CoA via the mutase-epimerase pathway. Thus, the introduction of an engineered mutase-epimerase pathway in E. coli enabled the uncoupling of carbon sources used to produce starter and extender units of polyketides.


Asunto(s)
Escherichia coli/enzimología , Escherichia coli/genética , Metilmalonil-CoA Mutasa/genética , Metilmalonil-CoA Mutasa/metabolismo , Complejos Multienzimáticos/genética , Complejos Multienzimáticos/metabolismo , Ingeniería de Proteínas/métodos , Clonación Molecular , Activación Enzimática/genética , Regulación Bacteriana de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Vectores Genéticos/síntesis química , Vectores Genéticos/metabolismo , Metilmalonil-CoA Mutasa/química , Datos de Secuencia Molecular , Complejos Multienzimáticos/química , Reacción en Cadena de la Polimerasa/métodos , Propionibacterium/enzimología , Propionibacterium/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA