Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cell ; 149(1): 214-31, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22464331

RESUMEN

Bromodomains (BRDs) are protein interaction modules that specifically recognize ε-N-lysine acetylation motifs, a key event in the reading process of epigenetic marks. The 61 BRDs in the human genome cluster into eight families based on structure/sequence similarity. Here, we present 29 high-resolution crystal structures, covering all BRD families. Comprehensive crossfamily structural analysis identifies conserved and family-specific structural features that are necessary for specific acetylation-dependent substrate recognition. Screening of more than 30 representative BRDs against systematic histone-peptide arrays identifies new BRD substrates and reveals a strong influence of flanking posttranslational modifications, such as acetylation and phosphorylation, suggesting that BRDs recognize combinations of marks rather than singly acetylated sequences. We further uncovered a structural mechanism for the simultaneous binding and recognition of diverse diacetyl-containing peptides by BRD4. These data provide a foundation for structure-based drug design of specific inhibitors for this emerging target family.


Asunto(s)
Histonas/química , Procesamiento Proteico-Postraduccional , Estructura Terciaria de Proteína , Acetilación , Secuencia de Aminoácidos , Animales , Cristalografía por Rayos X , Genoma Humano , Histonas/metabolismo , Humanos , Lisina/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Filogenia , Dominios y Motivos de Interacción de Proteínas , Proteoma/análisis
2.
Biochem J ; 459(1): 59-69, 2014 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-24438162

RESUMEN

GAK (cyclin G-associated kinase) is a key regulator of clathrin-coated vesicle trafficking and plays a central role during development. Additionally, due to the unusually high plasticity of its catalytic domain, it is a frequent 'off-target' of clinical kinase inhibitors associated with respiratory side effects of these drugs. In the present paper, we determined the crystal structure of the GAK catalytic domain alone and in complex with specific single-chain antibodies (nanobodies). GAK is constitutively active and weakly associates in solution. The GAK apo structure revealed a dimeric inactive state of the catalytic domain mediated by an unusual activation segment interaction. Co-crystallization with the nanobody NbGAK_4 trapped GAK in a dimeric arrangement similar to the one observed in the apo structure, whereas NbGAK_1 captured the activation segment of monomeric GAK in a well-ordered conformation, representing features of the active kinase. The presented structural and biochemical data provide insight into the domain plasticity of GAK and demonstrate the utility of nanobodies to gain insight into conformational changes of dynamic molecules. In addition, we present structural data on the binding mode of ATP mimetic inhibitors and enzyme kinetic data, which will support rational inhibitor design of inhibitors to reduce the off-target effect on GAK.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/química , Péptidos y Proteínas de Señalización Intracelular/fisiología , Multimerización de Proteína/fisiología , Proteínas Serina-Treonina Quinasas/química , Proteínas Serina-Treonina Quinasas/fisiología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/fisiología , Animales , Apoproteínas/química , Apoproteínas/fisiología , Camelus , Dominio Catalítico/fisiología , Cristalización/métodos , Activación Enzimática/fisiología , Humanos , Conformación Proteica
3.
J Biol Chem ; 288(11): 7803-7814, 2013 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-23349464

RESUMEN

Cullin-RING ligases are multisubunit E3 ubiquitin ligases that recruit substrate-specific adaptors to catalyze protein ubiquitylation. Cul3-based Cullin-RING ligases are uniquely associated with BTB adaptors that incorporate homodimerization, Cul3 assembly, and substrate recognition into a single multidomain protein, of which the best known are BTB-BACK-Kelch domain proteins, including KEAP1. Cul3 assembly requires a BTB protein "3-box" motif, analogous to the F-box and SOCS box motifs of other Cullin-based E3s. To define the molecular basis for this assembly and the overall architecture of the E3, we determined the crystal structures of the BTB-BACK domains of KLHL11 both alone and in complex with Cul3, along with the Kelch domain structures of KLHL2 (Mayven), KLHL7, KLHL12, and KBTBD5. We show that Cul3 interaction is dependent on a unique N-terminal extension sequence that packs against the 3-box in a hydrophobic groove centrally located between the BTB and BACK domains. Deletion of this N-terminal region results in a 30-fold loss in affinity. The presented data offer a model for the quaternary assembly of this E3 class that supports the bivalent capture of Nrf2 and reveals potential new sites for E3 inhibitor design.


Asunto(s)
Proteínas Portadoras/química , Proteínas Cullin/química , Ubiquitina-Proteína Ligasas/química , Sitios de Unión , Calorimetría/métodos , Cristalografía por Rayos X/métodos , Dimerización , Humanos , Modelos Moleculares , Conformación Molecular , Filogenia , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina-Proteína Ligasas/metabolismo
4.
J Med Chem ; 57(2): 462-76, 2014 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-24313754

RESUMEN

Bromodomains are gaining increasing interest as drug targets. Commercially sourced and de novo synthesized substituted [1,2,4]triazolo[4,3-a]phthalazines are potent inhibitors of both the BET bromodomains such as BRD4 as well as bromodomains outside the BET family such as BRD9, CECR2, and CREBBP. This new series of compounds is the first example of submicromolar inhibitors of bromodomains outside the BET subfamily. Representative compounds are active in cells exhibiting potent cellular inhibition activity in a FRAP model of CREBBP and chromatin association. The compounds described are valuable starting points for discovery of selective bromodomain inhibitors and inhibitors with mixed bromodomain pharmacology.


Asunto(s)
Proteína de Unión a CREB/antagonistas & inhibidores , Proteínas Nucleares/antagonistas & inhibidores , Ftalazinas/síntesis química , Proteínas/antagonistas & inhibidores , Factores de Transcripción/antagonistas & inhibidores , Triazoles/síntesis química , Proteína de Unión a CREB/química , Proteínas de Ciclo Celular , Línea Celular Tumoral , Ensamble y Desensamble de Cromatina , Cristalografía por Rayos X , Humanos , Simulación del Acoplamiento Molecular , Proteínas Nucleares/química , Ftalazinas/química , Ftalazinas/farmacología , Estructura Terciaria de Proteína , Proteínas/química , Relación Estructura-Actividad , Factores de Transcripción/química , Triazoles/química , Triazoles/farmacología
5.
N Biotechnol ; 29(5): 515-25, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-22027370

RESUMEN

The generation of affinity reagents to large numbers of human proteins depends on the ability to express the target proteins as high-quality antigens. The Structural Genomics Consortium (SGC) focuses on the production and structure determination of human proteins. In a 7-year period, the SGC has deposited crystal structures of >800 human protein domains, and has additionally expressed and purified a similar number of protein domains that have not yet been crystallised. The targets include a diversity of protein domains, with an attempt to provide high coverage of protein families. The family approach provides an excellent basis for characterising the selectivity of affinity reagents. We present a summary of the approaches used to generate purified human proteins or protein domains, a test case demonstrating the ability to rapidly generate new proteins, and an optimisation study on the modification of >70 proteins by biotinylation in vivo. These results provide a unique synergy between large-scale structural projects and the recent efforts to produce a wide coverage of affinity reagents to the human proteome.


Asunto(s)
Cromatografía de Afinidad/métodos , Proteoma/química , Proteoma/metabolismo , Proteómica/métodos , Animales , Biotina/metabolismo , Biotinilación , Cristalización , Medios de Cultivo , Genes , Humanos , Espectrometría de Masas , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Proteoma/genética , Proteoma/aislamiento & purificación , Solubilidad
6.
Mol Biosyst ; 7(10): 2899-908, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21804994

RESUMEN

Histone lysine acetylation is a key component of epigenetic regulation of gene transcription. Bromodomains, found in histone acetyl transferases and other chromatin-associated proteins, bind selectively to acetylated lysines, acting as "readers" of the histone code, and have recently been shown to contain a druggable binding pocket. Here we report the development of high-throughput assays that quantify the binding of bromodomains to acetylated histone peptides. We have used these assays to screen for histone binding partners of as yet uncharacterized bromodomains, adding to current knowledge of the histone code and expanding the repertoire of assays for chemical probe discovery. We have also demonstrated that these assays can be used to detect small molecule binding from the very weak to the nanomolar range. This assay methodology is thereby anticipated to provide the basis both for broader interactome profiling and for small molecule inhibitor discovery.


Asunto(s)
Péptidos/química , Acetilación , Descubrimiento de Drogas , Histonas/química , Humanos , Péptidos/antagonistas & inhibidores , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA