Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nature ; 611(7937): 780-786, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36385534

RESUMEN

Enteric pathogens are exposed to a dynamic polymicrobial environment in the gastrointestinal tract1. This microbial community has been shown to be important during infection, but there are few examples illustrating how microbial interactions can influence the virulence of invading pathogens2. Here we show that expansion of a group of antibiotic-resistant, opportunistic pathogens in the gut-the enterococci-enhances the fitness and pathogenesis of Clostridioides difficile. Through a parallel process of nutrient restriction and cross-feeding, enterococci shape the metabolic environment in the gut and reprogramme C. difficile metabolism. Enterococci provide fermentable amino acids, including leucine and ornithine, which increase C. difficile fitness in the antibiotic-perturbed gut. Parallel depletion of arginine by enterococci through arginine catabolism provides a metabolic cue for C. difficile that facilitates increased virulence. We find evidence of microbial interaction between these two pathogenic organisms in multiple mouse models of infection and patients infected with C. difficile. These findings provide mechanistic insights into the role of pathogenic microbiota in the susceptibility to and the severity of C. difficile infection.


Asunto(s)
Clostridioides difficile , Enterococcus , Interacciones Microbianas , Animales , Humanos , Ratones , Antibacterianos/farmacología , Arginina/deficiencia , Arginina/metabolismo , Clostridioides difficile/metabolismo , Clostridioides difficile/patogenicidad , Clostridioides difficile/fisiología , Modelos Animales de Enfermedad , Farmacorresistencia Bacteriana , Enterococcus/efectos de los fármacos , Enterococcus/metabolismo , Enterococcus/patogenicidad , Enterococcus/fisiología , Microbioma Gastrointestinal/efectos de los fármacos , Intestinos/efectos de los fármacos , Intestinos/metabolismo , Intestinos/microbiología , Leucina/metabolismo , Ornitina/metabolismo , Virulencia , Susceptibilidad a Enfermedades
2.
PLoS Pathog ; 18(3): e1010440, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35353876

RESUMEN

The gram-negative bacterium Kingella kingae is a leading cause of osteoarticular infections in young children and initiates infection by colonizing the oropharynx. Adherence to respiratory epithelial cells represents an initial step in the process of K. kingae colonization and is mediated in part by type IV pili. In previous work, we observed that elimination of the K. kingae PilC1 and PilC2 pilus-associated proteins resulted in non-piliated organisms that were non-adherent, suggesting that PilC1 and PilC2 have a role in pilus biogenesis. To further define the functions of PilC1 and PilC2, in this study we eliminated the PilT retraction ATPase in the ΔpilC1ΔpilC2 mutant, thereby blocking pilus retraction and restoring piliation. The resulting strain was non-adherent in assays with cultured epithelial cells, supporting the possibility that PilC1 and PilC2 have adhesive activity. Consistent with this conclusion, purified PilC1 and PilC2 were capable of saturable binding to epithelial cells. Additional analysis revealed that PilC1 but not PilC2 also mediated adherence to selected extracellular matrix proteins, underscoring the differential binding specificity of these adhesins. Examination of deletion constructs and purified PilC1 and PilC2 fragments localized adhesive activity to the N-terminal region of both PilC1 and PilC2. The deletion constructs also localized the twitching motility property to the N-terminal region of these proteins. In contrast, the deletion constructs established that the pilus biogenesis function of PilC1 and PilC2 resides in the C-terminal region of these proteins. Taken together, these results provide definitive evidence that PilC1 and PilC2 are adhesins and localize adhesive activity and twitching motility to the N-terminal domain and biogenesis to the C-terminal domain.


Asunto(s)
Kingella kingae , Adhesinas Bacterianas/genética , Adhesivos , Adhesión Bacteriana , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Niño , Preescolar , ADN , Proteínas Fimbrias/genética , Proteínas Fimbrias/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Humanos , Kingella kingae/genética
3.
J Neurosci ; 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34099505

RESUMEN

TRP channels are broadly required in animals for sensory physiology. To provide insights into regulatory mechanisms, the structures of many TRPs have been solved. This has led to new models, some of which have been tested in vitro Here, using the classical TRP required for Drosophila visual transduction, we uncovered structural requirements for channel function in photoreceptor cells. Using a combination of molecular genetics, field recordings, protein expression analysis, and molecular modeling, we interrogated roles for the S4-S5 linker and the TRP domain, and revealed mutations in the S4-S5 linker that impair channel opening or closing. We also uncovered differential requirements for the two highly conserved motifs in the TRP domain for activation and protein stability. By performing genetic complementation, we found an intra-subunit interaction between the S4-S5 linker and the S5 segment that contributes to activation. This analysis highlights key structural requirements for TRP channel opening, closing, folding and for intra-subunit interactions in a native context-Drosophila photoreceptor cells.SIGNIFICANCE STATEMENT:The importance of TRP channels for sensory biology and human health has motivated tremendous effort in trying to understand the roles of the structural motifs essential for their activation, inactivation and protein folding. In the current work, we have exploited the unique advantages of the Drosophila visual system to reveal mechanistic insights into TRP channel function in a native system-photoreceptor cells. Using a combination of electrophysiology (field recordings), cell biology and molecular modeling, we have revealed roles of key motifs for activation, inactivation and protein folding of TRP in vivo.

4.
mBio ; : e0153424, 2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39440978

RESUMEN

The gut microbiota plays a critical role in human health and disease. Microbial community assembly and succession early in life are influenced by numerous factors. In turn, assembly of this microbial community is known to influence the host, including immune system development, and has been linked to outcomes later in life. To date, the role of host-mediated nutritional immunity and metal availability in shaping microbial community assembly and succession early in life has not been explored in depth. Using a human infant cohort, we show that the metal-chelating protein calprotectin is highly abundant in infants. Taxa previously shown to be successful early colonizers of the infant gut, such as Enterococcus, Enterobacteriaceae, and Bacteroides, are highly resistant to experimental metal starvation in culture. Lactobacillus, meanwhile, is highly susceptible to metal restriction, pointing to a possible mechanism by which host-mediated metal limitation shapes the fitness of early colonizing taxa in the infant gut. We further demonstrate that formula-fed infants harbor markedly higher levels of metals in their gastrointestinal tract compared to breastfed infants. Formula-fed infants with high levels of metals harbor distinct microbial communities compared to breastfed infants, with higher levels of Enterococcus, Enterobacter, and Klebsiella, taxa which show increased resistance to the toxic effects of high metal concentrations. These data highlight a new paradigm in microbial community assembly and suggest an unappreciated role for nutritional immunity and dietary metals in shaping the earliest colonization events of the microbiota.IMPORTANCEEarly life represents a critical window for microbial colonization of the human gastrointestinal tract. Surprisingly, we still know little about the rules that govern the successful colonization of infants and the factors that shape the success of early life microbial colonizers. In this study, we report that metal availability is an important factor in the assembly and succession of the early life microbiota. We show that the host-derived metal-chelating protein, calprotectin, is highly abundant in infants and successful early life colonizers can overcome metal restriction. We further demonstrate that feeding modality (breastmilk vs formula) markedly impacts metal levels in the gut, potentially influencing microbial community succession. Our work suggests that metals, a previously unexplored aspect of early life ecology, may play a critical role in shaping the early events of microbiota assembly in infants.

5.
J Vis Exp ; (189)2022 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-36468707

RESUMEN

Understanding the metabolic consequences of microbial interactions that occur during infection presents a unique challenge to the field of biomedical imaging. Matrix-assisted laser desorption/ionization (MALDI) imaging mass spectrometry represents a label-free, in situ imaging modality capable of generating spatial maps for a wide variety of metabolites. While thinly sectioned tissue samples are now routinely analyzed via this technology, imaging mass spectrometry analyses of non-traditional substrates, such as bacterial colonies commonly grown on agar in microbiology research, remain challenging due to the high water content and uneven topography of these samples. This paper demonstrates a sample preparation workflow to allow for imaging mass spectrometry analyses of these sample types. This process is exemplified using bacterial co-culture macrocolonies of two gastrointestinal pathogens: Clostridioides difficile and Enterococcus faecalis. Studying microbial interactions in this well-defined agar environment is also shown to complement tissue studies aimed at understanding microbial metabolic cooperation between these two pathogenic organisms in mouse models of infection. Imaging mass spectrometry analyses of the amino acid metabolites arginine and ornithine are presented as representative data. This method is broadly applicable to other analytes, microbial pathogens or diseases, and tissue types where a spatial measure of cellular or tissue biochemistry is desired.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Interacciones Microbianas , Animales , Ratones , Agar , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Técnicas de Cocultivo
6.
J Pediatric Infect Dis Soc ; 10(Supplement_3): S3-S7, 2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34791400

RESUMEN

Clostridioides difficile is a spore-forming, obligate anaerobe, and ubiquitous nosocomial pathogen. While C. difficile infection in adults causes a spectrum of disease, including pseudomembranous colitis and toxic megacolon, healthy infants are asymptomatically colonized at high rates. The mechanisms leading to high colonization rates and infant protection from C. difficile are currently unknown; however, the ecology and metabolic state of the intestinal microbiome are factors known to influence C. difficile pathogenesis. In this review, we will examine the aspects of the early-life microbiome that may contribute to the incidence of C. difficile and protection from disease manifestation in infants. We will also discuss whether features of the adult microbiota that enable and restrict C. difficile are prevalent during early-life colonization.


Asunto(s)
Clostridioides difficile , Infecciones por Clostridium , Enterocolitis Seudomembranosa , Microbiota , Adulto , Clostridioides , Infecciones por Clostridium/epidemiología , Humanos , Lactante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA