Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Circ Res ; 135(4): 474-487, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-38962864

RESUMEN

BACKGROUND: How the sarcomeric complex is continuously turned over in long-living cardiomyocytes is unclear. According to the prevailing model of sarcomere maintenance, sarcomeres are maintained by cytoplasmic soluble protein pools with free recycling between pools and sarcomeres. METHODS: We imaged and quantified the turnover of expressed and endogenous sarcomeric proteins, including the giant protein titin, in cardiomyocytes in culture and in vivo, at the single cell and at the single sarcomere level using pulse-chase labeling of Halo-tagged proteins with covalent ligands. RESULTS: We disprove the prevailing protein pool model and instead show an ordered mechanism in which only newly translated proteins enter the sarcomeric complex while older ones are removed and degraded. We also show that degradation is independent of protein age and that proteolytic extraction is a rate-limiting step in the turnover. We show that replacement of sarcomeric proteins occurs at a similar rate within cells and across the heart and is slower in adult cells. CONCLUSIONS: Our findings establish a unidirectional replacement model for cardiac sarcomeres subunit replacement and identify their turnover principles.


Asunto(s)
Conectina , Miocitos Cardíacos , Sarcómeros , Sarcómeros/metabolismo , Animales , Miocitos Cardíacos/metabolismo , Conectina/metabolismo , Células Cultivadas , Proteolisis , Ratones , Biosíntesis de Proteínas , Proteínas Musculares/metabolismo , Ratas , Masculino , Ratones Endogámicos C57BL
2.
EMBO Rep ; 18(7): 1166-1185, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28588072

RESUMEN

A pathologic osteochondrogenic differentiation of vascular smooth muscle cells (VSMCs) promotes arterial calcifications, a process associated with significant morbidity and mortality. The molecular pathways promoting this pathology are not completely understood. We studied VSMCs, mouse aortic rings, and human aortic valves and showed here that histone deacetylase 4 (HDAC4) is upregulated early in the calcification process. Gain- and loss-of-function assays demonstrate that HDAC4 is a positive regulator driving this pathology. HDAC4 can shuttle between the nucleus and cytoplasm, but in VSMCs, the cytoplasmic rather than the nuclear activity of HDAC4 promotes calcification, and a nuclear-localized mutant of HDAC4 fails to promote calcification. The cytoplasmic location and function of HDAC4 is controlled by the activity of salt-inducible kinase (SIK). Pharmacologic inhibition of SIK sends HDAC4 to the nucleus and inhibits the calcification process in VSMCs, aortic rings, and in vivo In the cytoplasm, HDAC4 binds and its activity depends on the adaptor protein ENIGMA (Pdlim7) to promote vascular calcification. These results establish a cytoplasmic role for HDAC4 and identify HDAC4, SIK, and ENIGMA as mediators of vascular calcification.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Proteínas Represoras/genética , Calcificación Vascular/fisiopatología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Válvula Aórtica/fisiopatología , Diferenciación Celular , Núcleo Celular , Citoplasma/química , Citoplasma/metabolismo , Proteínas del Citoesqueleto/genética , Histona Desacetilasas/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas con Dominio LIM/genética , Ratones , Músculo Liso Vascular/patología , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Regulación hacia Arriba , Calcificación Vascular/genética
3.
Proc Natl Acad Sci U S A ; 113(32): E4639-47, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27385826

RESUMEN

The "canonical" proteasomal degradation signal is a substrate-anchored polyubiquitin chain. However, a handful of proteins were shown to be targeted following monoubiquitination. In this study, we established-in both human and yeast cells-a systematic approach for the identification of monoubiquitination-dependent proteasomal substrates. The cellular wild-type polymerizable ubiquitin was replaced with ubiquitin that cannot form chains. Using proteomic analysis, we screened for substrates that are nevertheless degraded under these conditions compared with those that are stabilized, and therefore require polyubiquitination for their degradation. For randomly sampled representative substrates, we confirmed that their cellular stability is in agreement with our screening prediction. Importantly, the two groups display unique features: monoubiquitinated substrates are smaller than the polyubiquitinated ones, are enriched in specific pathways, and, in humans, are structurally less disordered. We suggest that monoubiquitination-dependent degradation is more widespread than assumed previously, and plays key roles in various cellular processes.


Asunto(s)
Complejo de la Endopetidasa Proteasomal/fisiología , Proteínas/metabolismo , Ubiquitinación , Humanos , Células MCF-7 , Complejo de la Endopetidasa Proteasomal/química , Proteómica
4.
J Mol Cell Cardiol ; 116: 16-28, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29371135

RESUMEN

The mechanisms responsible for maintaining macromolecular protein complexes, with their proper localization and subunit stoichiometry, are incompletely understood. Here we studied the maintenance of the sarcomere, the basic contractile macromolecular complex of cardiomyocytes. We performed single-cell analysis of cardiomyocytes using imaging of mRNA and protein synthesis, and demonstrate that three distinct mechanisms are responsible for the maintenance of the sarcomere: mRNAs encoding for sarcomeric proteins are localized to the sarcomere, ribosomes are localized to the sarcomere with localized sarcomeric protein translation, and finally, a localized E3 ubiquitin ligase allow efficient degradation of excess unincorporated sarcomeric proteins. We show that these mechanisms are distinct, required, and work in unison, to ensure both spatial localization, and to overcome the large variability in transcription. Cardiomyocytes simultaneously maintain all their sarcomeres using localized translation and degradation processes where proteins are continuously and locally synthesized at high rates, and excess proteins are continuously degraded.


Asunto(s)
Biosíntesis de Proteínas , Estabilidad del ARN , Sarcómeros/genética , Animales , Citoesqueleto/metabolismo , Miocitos Cardíacos/metabolismo , Proteolisis , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas Wistar , Sarcómeros/ultraestructura , Transcripción Genética
5.
J Mol Cell Cardiol ; 116: 91-105, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29421235

RESUMEN

Cardiac fibroblasts play key roles in both health and disease. Their regulatory elements, transcription factors (TFs), and mechanisms of expression control have not been fully elucidated. We used a differential open chromatin approach, coupled with active enhancer mark, transcriptomic, and computational TFs binding analysis to map cell-type-specific active enhancers in cardiac fibroblasts and cardiomyocytes, and outline the TFs families that control them. This approach was validated by its ability to uncover the known cardiomyocyte TF biology in an unbiased manner, and was then applied to cardiac fibroblasts. We identified Tead, Sox9, Smad, Tcf, Meis, Rbpj, and Runx1 as the main cardiac fibroblasts TF families. Our analysis shows that in both cell types, distal enhancers, containing concentrated combinatorial clusters of multiple tissue expressed TFs recognition motifs, are combinatorically clustered around tissue specific genes. This model for tissue specific gene expression in the heart supports the general "billboard" model for enhancer organization.


Asunto(s)
Elementos de Facilitación Genéticos , Fibroblastos/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/metabolismo , Acetilación , Animales , Sitios de Unión , Regulación de la Expresión Génica , Ontología de Genes , Redes Reguladoras de Genes , Histonas/metabolismo , Lisina/metabolismo , Motivos de Nucleótidos/genética , Especificidad de Órganos , Regiones Promotoras Genéticas , Unión Proteica , Ratas , Sitio de Iniciación de la Transcripción
6.
Circulation ; 135(19): 1832-1847, 2017 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-28167635

RESUMEN

BACKGROUND: Advancing structural and functional maturation of stem cell-derived cardiomyocytes remains a key challenge for applications in disease modeling, drug screening, and heart repair. Here, we sought to advance cardiomyocyte maturation in engineered human myocardium (EHM) toward an adult phenotype under defined conditions. METHODS: We systematically investigated cell composition, matrix, and media conditions to generate EHM from embryonic and induced pluripotent stem cell-derived cardiomyocytes and fibroblasts with organotypic functionality under serum-free conditions. We used morphological, functional, and transcriptome analyses to benchmark maturation of EHM. RESULTS: EHM demonstrated important structural and functional properties of postnatal myocardium, including: (1) rod-shaped cardiomyocytes with M bands assembled as a functional syncytium; (2) systolic twitch forces at a similar level as observed in bona fide postnatal myocardium; (3) a positive force-frequency response; (4) inotropic responses to ß-adrenergic stimulation mediated via canonical ß1- and ß2-adrenoceptor signaling pathways; and (5) evidence for advanced molecular maturation by transcriptome profiling. EHM responded to chronic catecholamine toxicity with contractile dysfunction, cardiomyocyte hypertrophy, cardiomyocyte death, and N-terminal pro B-type natriuretic peptide release; all are classical hallmarks of heart failure. In addition, we demonstrate the scalability of EHM according to anticipated clinical demands for cardiac repair. CONCLUSIONS: We provide proof-of-concept for a universally applicable technology for the engineering of macroscale human myocardium for disease modeling and heart repair from embryonic and induced pluripotent stem cell-derived cardiomyocytes under defined, serum-free conditions.


Asunto(s)
Células Madre Embrionarias/trasplante , Insuficiencia Cardíaca/terapia , Células Madre Pluripotentes Inducidas/trasplante , Miocitos Cardíacos/trasplante , Ingeniería de Tejidos/métodos , Remodelación Ventricular/fisiología , Animales , Diferenciación Celular/fisiología , Células Madre Embrionarias/fisiología , Insuficiencia Cardíaca/patología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocardio/citología , Miocardio/patología , Miocitos Cardíacos/fisiología , Impresión Tridimensional , Ratas , Ratas Desnudas
8.
J Clin Invest ; 134(13)2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38743494

RESUMEN

Cardiomyocyte sarcomeres contain localized ribosomes, but the factors responsible for their localization and the significance of localized translation are unknown. Using proximity labeling, we identified ribosomal protein SA (RPSA) as a Z-line protein. In cultured cardiomyocytes, the loss of RPSA led to impaired local protein translation and reduced sarcomere integrity. By employing CAS9-expressing mice, along with adeno-associated viruses expressing CRE recombinase and single-guide RNAs targeting Rpsa, we knocked out Rpsa in vivo and observed mislocalization of ribosomes and diminished local translation. These genetic mosaic mice with Rpsa knockout in a subset of cardiomyocytes developed dilated cardiomyopathy, featuring atrophy of RPSA-deficient cardiomyocytes, compensatory hypertrophy of unaffected cardiomyocytes, left ventricular dilation, and impaired contractile function. We demonstrated that RPSA C-terminal domain is sufficient for localization to the Z-lines and that if the microtubule network is disrupted RPSA loses its sarcomeric localization. These findings highlight RPSA as a ribosomal factor essential for ribosome localization to the Z-line, facilitating local translation and sarcomere maintenance.


Asunto(s)
Ratones Noqueados , Miocitos Cardíacos , Biosíntesis de Proteínas , Proteínas Ribosómicas , Sarcómeros , Animales , Sarcómeros/metabolismo , Sarcómeros/patología , Sarcómeros/genética , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ribosomas/metabolismo , Ribosomas/genética , Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/metabolismo , Cardiomiopatía Dilatada/patología
9.
Circ Res ; 108(2): 176-83, 2011 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-21127295

RESUMEN

RATIONALE: An increase in cardiac afterload typically produces concentric hypertrophy characterized by an increase in cardiomyocyte width, whereas volume overload or exercise results in eccentric growth characterized by cellular elongation and addition of sarcomeres in series. The signaling pathways that control eccentric versus concentric heart growth are not well understood. OBJECTIVE: To determine the role of extracellular signal-regulated kinase 1 and 2 (ERK1/2) in regulating the cardiac hypertrophic response. METHODS AND RESULTS: Here, we used mice lacking all ERK1/2 protein in the heart (Erk1(-/-) Erk2(fl/fl-Cre)) and mice expressing activated mitogen-activated protein kinase kinase (Mek)1 in the heart to induce ERK1/2 signaling, as well as mechanistic experiments in cultured myocytes to assess cellular growth characteristics associated with this signaling pathway. Although genetic deletion of all ERK1/2 from the mouse heart did not block the cardiac hypertrophic response per se, meaning that the heart still increased in weight with both aging and pathological stress stimulation, it did dramatically alter how the heart grew. For example, adult myocytes from hearts of Erk1(-/-) Erk2(fl/fl-Cre) mice showed preferential eccentric growth (lengthening), whereas myocytes from Mek1 transgenic hearts showed concentric growth (width increase). Isolated adult myocytes acutely inhibited for ERK1/2 signaling by adenoviral gene transfer showed spontaneous lengthening, whereas infection with an activated Mek1 adenovirus promoted constitutive ERK1/2 signaling and increased myocyte thickness. A similar effect was observed in engineered heart tissue under cyclic stretching, where ERK1/2 inhibition led to preferential lengthening. CONCLUSIONS: Taken together, these data demonstrate that the ERK1/2 signaling pathway uniquely regulates the balance between eccentric and concentric growth of the heart.


Asunto(s)
Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Animales , Células Cultivadas , Hipertrofia , MAP Quinasa Quinasa 1/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 3 Activada por Mitógenos/genética , Modelos Animales , Fosforilación , Transducción de Señal/fisiología
10.
Commun Biol ; 6(1): 1229, 2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38052926

RESUMEN

The IGF2BP family of RNA binding proteins consists of three paralogs that regulate intracellular RNA localization, RNA stability, and translational control. Although IGF2BP1 and 3 are oncofetal proteins, IGF2BP2 expression is maintained in many tissues, including the heart, into adulthood. IGF2BP2 is upregulated in cardiomyocytes during cardiac stress and remodeling and returns to normal levels in recovering hearts. We wondered whether IGF2BP2 might play an adaptive role during cardiac stress and recovery. Enhanced expression of an IGF2BP2 transgene in a conditional, inducible mouse line leads to dilated cardiomyopathy (DCM) and death within 3-4 weeks in newborn or adult hearts. Downregulation of the transgene after 2 weeks, however, rescues these mice, with complete recovery by 12 weeks. Hearts overexpressing IGF2BP2 downregulate sarcomeric and mitochondrial proteins and have fragmented mitochondria and elongated, thinner sarcomeres. IGF2BP2 is also upregulated in DCM or myocardial infarction patients. These results suggest that IGF2BP2 may be an attractive target for therapeutic intervention in cardiomyopathies.


Asunto(s)
Cardiomiopatías , Cardiomiopatía Dilatada , Adulto , Animales , Humanos , Ratones , Cardiomiopatías/metabolismo , Cardiomiopatía Dilatada/genética , Miocitos Cardíacos/metabolismo , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
11.
J Biol Chem ; 285(18): 13721-35, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20194497

RESUMEN

TEA domain transcription factor-1 (TEAD-1) is essential for proper heart development and is implicated in cardiac specific gene expression and the hypertrophic response of primary cardiomyocytes to hormonal and mechanical stimuli, and its activity increases in the pressure-overloaded hypertrophied rat heart. To investigate whether TEAD-1 is an in vivo modulator of cardiac specific gene expression and hypertrophy, we developed transgenic mice expressing hemagglutinin-tagged TEAD-1 under the control of the muscle creatine kinase promoter. We show that a sustained increase in TEAD-1 protein leads to an age-dependent dysfunction. Magnetic resonance imaging revealed decreases in cardiac output, stroke volume, ejection fraction, and fractional shortening. Isolated TEAD-1 hearts revealed decreased left ventricular power output that correlated with increased betaMyHC protein. Histological analysis showed altered alignment of cardiomyocytes, septal wall thickening, and fibrosis, although electrocardiography displayed a left axis shift of mean electrical axis. Transcripts representing most members of the fetal heart gene program remained elevated from fetal to adult life. Western blot analyses revealed decreases in p-phospholamban, SERCA2a, p-CX43, p-GSK-3alpha/beta, nuclear beta-catenin, GATA4, NFATc3/c4, and increased NCX1, nuclear DYKR1A, and Pur alpha/beta protein. TEAD-1 mice did not display cardiac hypertrophy. TEAD-1 mice do not tolerate stress as they die over a 4-day period after surgical induction of pressure overload. These data provide the first in vivo evidence that increased TEAD-1 can induce characteristics of cardiac remodeling associated with cardiomyopathy and heart failure.


Asunto(s)
Cardiomegalia/metabolismo , Proteínas de Unión al ADN/biosíntesis , Insuficiencia Cardíaca/metabolismo , Proteínas Musculares/biosíntesis , Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Factores de Transcripción/biosíntesis , Animales , Cardiomegalia/genética , Cardiomegalia/patología , Proteínas de Unión al ADN/genética , Fibrosis/metabolismo , Fibrosis/patología , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/patología , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Miocardio/patología , Miocitos Cardíacos/patología , Especificidad de Órganos/genética , Regiones Promotoras Genéticas/genética , Ratas , Estrés Fisiológico/genética , Volumen Sistólico/genética , Factores de Transcripción de Dominio TEA , Factores de Transcripción/genética
12.
Cell Signal ; 84: 110033, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33933582

RESUMEN

Pressure overload and other stress stimuli elicit a host of adaptive and maladaptive signaling cascades that eventually lead to cardiac hypertrophy and heart failure. Among those, the mitogen-activated protein kinase (MAPK) signaling pathway has been shown to play a prominent role. The dual specificity phosphatases (DUSPs), also known as MAPK specific phosphatases (MKPs), that can dephosphorylate the MAPKs and inactivate them are gaining increasing attention as potential drug targets. Here we try to review recent advancements in understanding the roles of the different DUSPs, and the pathways that they regulate in cardiac remodeling. We focus on the regulation of three main MAPK branches - the p38 kinases, the c-Jun-N-terminal kinases (JNKs) and the extracellular signal-regulated kinases (ERK) by various DUSPs and try to examine their roles.


Asunto(s)
Fosfatasas de Especificidad Dual , Fosfatasas de la Proteína Quinasa Activada por Mitógenos , Cardiomegalia , Fosfatasas de Especificidad Dual/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Sistema de Señalización de MAP Quinasas , Fosfatasas de la Proteína Quinasa Activada por Mitógenos/metabolismo
13.
Nat Commun ; 12(1): 1547, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707436

RESUMEN

Hypertension, exercise, and pregnancy are common triggers of cardiac remodeling, which occurs primarily through the hypertrophy of individual cardiomyocytes. During hypertrophy, stress-induced signal transduction increases cardiomyocyte transcription and translation, which promotes the addition of new contractile units through poorly understood mechanisms. The cardiomyocyte microtubule network is also implicated in hypertrophy, but via an unknown role. Here, we show that microtubules are indispensable for cardiac growth via spatiotemporal control of the translational machinery. We find that the microtubule motor Kinesin-1 distributes mRNAs and ribosomes along microtubule tracks to discrete domains within the cardiomyocyte. Upon hypertrophic stimulation, microtubules redistribute mRNAs and new protein synthesis to sites of growth at the cell periphery. If the microtubule network is disrupted, mRNAs and ribosomes collapse around the nucleus, which results in mislocalized protein synthesis, the rapid degradation of new proteins, and a failure of growth, despite normally increased translation rates. Together, these data indicate that mRNAs and ribosomes are actively transported to specific sites to facilitate local translation and assembly of contractile units, and suggest that properly localized translation - and not simply translation rate - is a critical determinant of cardiac hypertrophy. In this work, we find that microtubule based-transport is essential to couple augmented transcription and translation to productive cardiomyocyte growth during cardiac stress.


Asunto(s)
Cardiomegalia/patología , Microtúbulos/metabolismo , Miocitos Cardíacos/patología , Biosíntesis de Proteínas/fisiología , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Animales , Remodelación Atrial/fisiología , Transporte Biológico/fisiología , Células Cultivadas , Humanos , Cinesinas/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratas , Transducción de Señal/fisiología , Remodelación Ventricular/fisiología
14.
Cardiovasc Res ; 117(1): 43-59, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32365197

RESUMEN

Echocardiography is a reliable and reproducible method to assess non-invasively cardiac function in clinical and experimental research. Significant progress in the development of echocardiographic equipment and transducers has led to the successful translation of this methodology from humans to rodents, allowing for the scoring of disease severity and progression, testing of new drugs, and monitoring cardiac function in genetically modified or pharmacologically treated animals. However, as yet, there is no standardization in the procedure to acquire echocardiographic measurements in small animals. This position paper focuses on the appropriate acquisition and analysis of echocardiographic parameters in adult mice and rats, and provides reference values, representative images, and videos for the accurate and reproducible quantification of left ventricular function in healthy and pathological conditions.


Asunto(s)
Investigación Biomédica/normas , Enfermedades Cardiovasculares/diagnóstico por imagen , Ecocardiografía/normas , Función Ventricular Izquierda , Animales , Enfermedades Cardiovasculares/fisiopatología , Consenso , Diástole , Modelos Animales de Enfermedad , Ratones , Ratas , Sístole
15.
JACC Cardiovasc Imaging ; 13(8): 1643-1651, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32305485

RESUMEN

OBJECTIVES: The objective of this study was to determine risk factors for progression to hemodynamically significant tricuspid regurgitation (TR) and the population burden attributable to these risk factors. BACKGROUND: Few data are available with regard to risk factors associated with the development of hemodynamically significant functional TR. METHODS: A total of 1,552 subjects were studied beginning with an index echocardiogram demonstrating trivial or mild TR. Risk factors for progression to moderate or severe TR were determined by using logistic regression and classification trees. Population attributable fractions were calculated for each risk factor. RESULTS: During a median follow-up time of 38 (interquartile range [IQR]: 26 to 63) months, 292 patients (18.8%) developed moderate/severe TR. Independent predictors of TR progression were age, female sex, heart failure, pacemaker electrode, atrial fibrillation (AF), and indicators of left heart disease, including left atrial (LA) enlargement, elevated pulmonary artery pressure (PAP), and left-sided valvular disease. Classification and regression tree analysis demonstrated that the strongest predictors of TR progression were PAP of ≥36 mm Hg, LA enlargement, age ≥60 years, and AF. In the absence of these 4 risk factors, progression to moderate or severe TR occurred in ∼3% of patients. Age (28.4%) and PAP (20.5%) carried the highest population-attributable fractions for TR progression. In patients with TR progression, there was a marked concomitant increase of incident cases of elevated PAP (40%); mitral and aortic valve intervention (12%); reductions in left ventricular ejection fraction (19%), and new AF (32%) (all p < 0.01). CONCLUSIONS: TR progression is determined mainly by markers of increased left-sided filling pressures (PAP and LA enlargement), AF, and age. At the population level, age and PAP are the most important contributors to the burden of significant TR. TR progression entails a marked parallel increase in the severity of left-sided heart disease.


Asunto(s)
Insuficiencia de la Válvula Tricúspide , Femenino , Humanos , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Estudios Retrospectivos , Factores de Riesgo , Volumen Sistólico , Función Ventricular Izquierda
16.
F1000Res ; 92020.
Artículo en Inglés | MEDLINE | ID: mdl-33604024

RESUMEN

Background: Heart failure is a major health problem and progress in this field relies on better understanding of the mechanisms and development of novel therapeutics using animal models. The rat may be preferable to the mouse as a cardiovascular disease model due to its closer physiology to humans and due to its large size that facilitates surgical and monitoring procedures. However, unlike the mouse, genetic manipulation of the rat genome is challenging. Methods: Here we developed a simple, refined, and robust cardiac-specific rat transgenic model based on an adeno-associated virus (AAV) 9 containing a cardiac troponin T promoter. This model uses a single intraperitoneal injection of AAV and does not require special expertise or equipment. Results: We characterize the AAV dose required to achieve a high cardiac specific level of expression of a transgene in the rat heart using a single intraperitoneal injection to neonates. We show that at this AAV dose GFP expression does not result in hypertrophy, a change in cardiac function or other evidence for toxicity. Conclusions: The model shown here allows easy and fast transgenic based disease modeling of cardiovascular disease in the rat heart, and can also potentially be expanded to deliver Cas9 and gRNAs or to deliver small hairpin (sh)RNAs to also achieve gene knockouts and knockdown in the rat heart.


Asunto(s)
Dependovirus , Modelos Animales de Enfermedad , Vectores Genéticos , Insuficiencia Cardíaca/genética , Animales , Dependovirus/genética , Regiones Promotoras Genéticas , Ratas , Ratas Transgénicas , Transgenes , Troponina T/genética
17.
J Am Soc Echocardiogr ; 32(12): 1538-1546.e1, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31624025

RESUMEN

BACKGROUND: Significant tricuspid regurgitation (TR) is associated with higher risk for adverse cardiovascular outcomes. Left-sided heart disease (LHD) is a potentially important confounder of this association because it is strongly linked to both TR and clinical outcome. METHODS: We studied 5,886 patients who were followed for a period of 10 years after the index echocardiographic examination. The relationship between TR severity and the end point of admission for heart failure or cardiovascular mortality was analyzed using competing risk analysis, Cox model, and propensity score matching. RESULTS: Higher TR grade was associated with markers of LHD including left ventricular systolic dysfunction, valvular heart disease ≥ moderate, left atrial enlargement, and pulmonary hypertension (all P < .001). There was a significant interaction between TR and the presence of LHD with regard to the end point of heart failure in the competing risks model (P = .01) and the combined end point of heart failure and cardiovascular mortality (P = .02). In both models, moderate/severe TR was associated with higher risk for heart failure (hazard ratio [HR] = 3.10; 95% CI, 1.41-6.84; P = .005) and the combined end point of heart failure or cardiovascular mortality (HR = 2.75; 95% CI, 1.33-5.63, P = .006) only in patients without LHD. Propensity score matching yielded 350 patient pairs, of which 88% had LHD. The HR for heart failure or cardiovascular mortality at 10 years was 0.78 (95% CI, 0.56-1.08; P = .14) in the moderate/severe TR group as compared with the trivial/mild TR. CONCLUSIONS: Moderate or severe functional TR portends an increased risk for heart failure and cardiovascular mortality only when isolated, without concomitant LHD.


Asunto(s)
Causas de Muerte , Insuficiencia Cardíaca/mortalidad , Insuficiencia de la Válvula Tricúspide/complicaciones , Insuficiencia de la Válvula Tricúspide/diagnóstico por imagen , Disfunción Ventricular Izquierda/mortalidad , Anciano , Estudios de Cohortes , Bases de Datos Factuales , Ecocardiografía Doppler/métodos , Femenino , Insuficiencia Cardíaca/diagnóstico por imagen , Insuficiencia Cardíaca/etiología , Humanos , Israel , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Pronóstico , Puntaje de Propensión , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Medición de Riesgo , Índice de Severidad de la Enfermedad , Análisis de Supervivencia , Insuficiencia de la Válvula Tricúspide/fisiopatología , Disfunción Ventricular Izquierda/diagnóstico por imagen , Disfunción Ventricular Izquierda/etiología
18.
FASEB J ; 21(10): 2551-63, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17435178

RESUMEN

Human embryonic stem cells (hESC) are pluripotent lines that can differentiate in vitro into cell derivatives of all three germ layers, including cardiomyocytes. Successful application of these unique cells in the areas of cardiovascular research and regenerative medicine has been hampered by difficulties in identifying and selecting specific cardiac progenitor cells from the mixed population of differentiating cells. We report the generation of stable transgenic hESC lines, using lentiviral vectors, and single-cell clones that express a reporter gene (eGFP) under the transcriptional control of a cardiac-specific promoter (the human myosin light chain-2V promoter). Our results demonstrate the appearance of eGFP-expressing cells during the differentiation of the hESC as embryoid bodies (EBs) that can be identified and sorted using FACS (purity>95%, viability>85%). The eGFP-expressing cells were stained positively for cardiac-specific proteins (>93%), expressed cardiac-specific genes, displayed cardiac-specific action-potentials, and could form stable myocardial cell grafts following in vivo cell transplantation. The generation of these transgenic hESC lines may be used to identify and study early cardiac precursors for developmental studies, to robustly quantify the extent of cardiomyocyte differentiation, to label the cells for in vivo grafting, and to allow derivation of purified cell populations of cardiomyocytes for future myocardial cell therapy strategies.


Asunto(s)
Células Madre Embrionarias/citología , Corazón/fisiología , Células Musculares/fisiología , Diferenciación Celular , Línea Celular , Células Clonales , Cartilla de ADN , Genes Reporteros , Proteínas Fluorescentes Verdes/análisis , Proteínas Fluorescentes Verdes/genética , Corazón/embriología , Humanos , Células Musculares/citología , Miocardio/citología , Transfección
19.
Int J Cardiovasc Imaging ; 34(2): 237-249, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28825162

RESUMEN

The objectives of this study were to assess whether 2-dimensional strain (2DS) can detect left ventricular (LV) segmental dysfunction and to compare the diagnostic accuracy of various 2DS parameters. Multiple segmental longitudinal 2DS parameters were measured in 54 patients with a first myocardial infarction and single vessel coronary artery disease (age: 56 ± 11 years, 74% men, LV ejection fraction: 47 ± 10%, left anterior descending artery occlusion in 63%) and 14 age-matched subjects. 2DS parameters were compared to visual assessment of segmental function by multiple observers. Using receiver-operating characteristics analysis, the area under the curve (AUC) for peak systolic strain in diagnosing segmental dysfunction (akinetic or hypokinetic LV segments) and for diagnosing akinetic segments was 0.85 (95% confidence interval 0.83-0.88) and 0.88 (0.85-0.90), respectively (all P values < 0.001). Other 2DS strain parameters had similar (peak strain, peak strain rate) or lower (post-systolic shortening, time-to-peak strain, diastolic 2DS parameters) AUC values. An absolute value of peak systolic strain <16.8% (25th percentile in normal subjects) had high sensitivity (0.89) and negative predictive values (0.88), but low specificity (0.55) and positive predictive values (0.59) for diagnosing segmental dysfunction. Similar findings were observed using a cutoff of <13.3% (absolute value of 10th percentile) for diagnosing akinetic segments. Diagnostic accuracy was significantly worse for segments in which visual segmental assessment was discordant between observers. In conclusion, 2DS can be used to diagnose segmental LV dysfunction with high sensitivity but limited specificity. The diagnostic limitation of 2DS is partially related to the visual echocardiographic definition of segmental abnormality.


Asunto(s)
Ecocardiografía Doppler , Contracción Miocárdica , Infarto del Miocardio/diagnóstico por imagen , Disfunción Ventricular Izquierda/diagnóstico por imagen , Función Ventricular Izquierda , Anciano , Área Bajo la Curva , Fenómenos Biomecánicos , Estudios de Casos y Controles , Femenino , Humanos , Masculino , Persona de Mediana Edad , Infarto del Miocardio/complicaciones , Infarto del Miocardio/fisiopatología , Valor Predictivo de las Pruebas , Pronóstico , Estudios Prospectivos , Curva ROC , Reproducibilidad de los Resultados , Disfunción Ventricular Izquierda/etiología , Disfunción Ventricular Izquierda/fisiopatología
20.
Int J Cardiol ; 270: 204-213, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29857938

RESUMEN

BACKGROUND: Chronic pressure overload and a variety of mediators induce concentric cardiac hypertrophy. When prolonged, cardiac hypertrophy culminates in decreased myocardial function and heart failure. Activation of the extracellular signal-regulated kinase (ERK) is consistently observed in animal models of hypertrophy and in human patients, but its role in the process is controversial. METHODS: We generated transgenic mouse lines with cardiomyocyte restricted overexpression of intrinsically active ERK1, which similar to the observations in hypertrophy is phosphorylated on both the TEY and the Thr207 motifs and is overexpressed at pathophysiological levels. RESULTS: The activated ERK1 transgenic mice developed a modest adaptive hypertrophy with increased contractile function and without fibrosis. Following induction of pressure-overload, where multiple pathways are stimulated, this activation did not further increase the degree of hypertrophy but protected the heart through a decrease in the degree of fibrosis and maintenance of ventricular contractile function. CONCLUSIONS: The ERK pathway acts to promote a compensated hypertrophic response, with enhanced contractile function and reduced fibrosis. The activation of this pathway may be a therapeutic strategy to preserve contractile function when the pressure overload cannot be easily alleviated. The inhibition of this pathway, which is increasingly being used for cancer therapy on the other hand, should be used with caution in the presence of pressure-overload.


Asunto(s)
Presión Sanguínea/fisiología , Cardiomegalia/enzimología , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa 3 Activada por Mitógenos/biosíntesis , Miocitos Cardíacos/enzimología , Animales , Animales Recién Nacidos , Cardiomegalia/patología , Células Cultivadas , Activación Enzimática/fisiología , Femenino , Masculino , Ratones , Ratones Transgénicos , Contracción Miocárdica/fisiología , Miocitos Cardíacos/patología , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA