Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Lipid Res ; 59(2): 298-311, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29208696

RESUMEN

The enzyme acetyl-CoA carboxylase (ACC) plays a crucial role in fatty acid metabolism. In recent years, ACC has been recognized as a promising drug target for treating different diseases. However, the role of ACC in vascular endothelial cells (ECs) has been neglected so far. To characterize the role of ACC, we used the ACC inhibitor, soraphen A, as a chemical tool, and also a gene silencing approach. We found that ACC1 was the predominant isoform in human umbilical vein ECs as well as in human microvascular ECs and that soraphen A reduced the levels of malonyl-CoA. We revealed that ACC inhibition shifted the lipid composition of EC membranes. Accordingly, membrane fluidity, filopodia formation, and migratory capacity were reduced. The antimigratory action of soraphen A depended on an increase in the cellular proportion of PUFAs and, most importantly, on a decreased level of phosphatidylglycerol. Our study provides a causal link between ACC, membrane lipid composition, and cell migration in ECs. Soraphen A represents a useful chemical tool to investigate the role of fatty acid metabolism in ECs and ACC inhibition offers a new and valuable therapeutic perspective for the treatment of EC migration-related diseases.


Asunto(s)
Acetil-CoA Carboxilasa/metabolismo , Movimiento Celular , Células Endoteliales/metabolismo , Fosfolípidos/metabolismo , Acetil-CoA Carboxilasa/antagonistas & inhibidores , Movimiento Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Células Endoteliales/efectos de los fármacos , Humanos , Macrólidos/farmacología
2.
Pulm Pharmacol Ther ; 31: 92-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25234924

RESUMEN

The bronchospasmolytic and secretolytic effects of ivy leaves dry extracts can be explained by an increased ß2-adrenergic responsiveness of the bronchi. Recently, it was shown that α-hederin inhibits the internalization of ß2-adrenergic receptors (ß2AR) under stimulating conditions. α-Hederin pretreated alveolar type II cells and human airway smooth muscle cells revealed an increased ß2AR binding and an elevated intracellular cAMP level, respectively. In order to identify whether additional compounds also mediate an increased ß2-adrenergic responsiveness, we examined the ingredients of an ivy leaves dry extract (EA 575) protocatechuic acid, neochlorogenic acid, chlorogenic acid, cryptochlorogenic acid, rutin, kaempferol-3-O-rutinoside, 3,4-, 3,5- and 4,5-dicaffeoylquinic acid, hederacoside B, and ß-hederin. Within all the tested substances, only ß-hederin inhibited the internalization of GFP-tagged ß2AR in stably transfected HEK293 cells. Using fluorescence correlation spectroscopy ß-hederin (1 µM, 24 h) pretreated HASM cells showed a statistically significant increase in the ß2AR binding from 33.0 ± 8.9% to 44.1 ± 11.5% which was distributed with 36.0 ± 9.5% for τbound1 and 8.1 ± 2.6% for τbound2, respectively (n = 8, p < 0.05). The increased binding was selectively found for the receptor-ligand complex with unrestricted lateral mobility (τbound1 of 0.9 ± 0.1 ms, D1 = 9.1 ± 0.2 µm(2)/s, n = 8), whereas the binding of ß2AR with hindered lateral mobility (τbound2 of 64.2 ± 47.6 ms, D2 = 0.15 ± 0.02 µm(2)/s, n = 8) was not affected. Compared to control cells, a statistically significant increase of 17.5 ± 6.4% (n = 4, p < 0.05) and 24.2 ± 5.8% (n = 4, p < 0.001) in the cAMP formation was found for ß-hederin pretreated HASM cells after stimulation with 10 µM of terbutaline and simultaneous stimulation with 10 µM terbutaline and 10 µM forskolin, respectively. Within this systematic study focusing on the influence of the ingredients of an ivy leaves dry extract on HASM cells it was possible to identify ß-hederin as further component presumably responsible for the ß2-mimetic effects.


Asunto(s)
Hedera , Miocitos del Músculo Liso/efectos de los fármacos , Extractos Vegetales/farmacología , Cromatografía Líquida de Alta Presión , AMP Cíclico/biosíntesis , Relación Dosis-Respuesta a Droga , Flavonoides/farmacología , Células HEK293 , Humanos , Hidroxibenzoatos/farmacología , Espectrometría de Masas , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacología , Extractos Vegetales/química , Hojas de la Planta , Receptores Adrenérgicos beta 2/metabolismo , Saponinas/farmacología
3.
Phytomedicine ; 54: 66-76, 2019 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-30668384

RESUMEN

BACKGROUND: Chronic stress, an important factor in the development of depressive disorders, leads to an increased formation of cortisol, which causes a hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis. In addition, cortisol mediates an adaptive effect on plasma membrane fluidity which may affect signal transduction of membrane-bound receptors and contribute to pathophysiological changes. METHODS: Membrane fluidity was measured by fluorescence anisotropy using DPH (1,6-diphenyl-1,3,5-hexatriene) and TMA-DPH (1-(4-(trimethylamino)phenyl)-6-phenylhexa-1,3,5-triene). Changes in cellular content of phosphatidylcholine species was determined by pulse-chase experiments using deuterated choline and mass spectrometry. Single molecule tracking was used to examine the lateral mobility of ß1-adrenoceptors and changes in cAMP formation were measured by ELISA. RESULTS: Chronic exposure (6 - 8 days) of C6 cells to cortisol dose-dependently decreased DPH and TMA-DPH fluorescence anisotropy, reflecting increased membrane fluidity. In contrast, cells pretreated with St. John's wort extract Ze117 showed increased DPH and TMA-DPH fluorescence anisotropy values, indicating a membrane rigidification effect which was mediated at least by the constituents hypericin, hyperforin, quercetin, amentoflavone and biapigenin. The observed membrane fluidizing effect of cortisol could be reversed by cotreatment with Ze117. The membrane rigidification of Ze117 was in line with the in parallel observed decrease in the phosphatidylcholine/phosphatidylethanolamine ratio determined in whole cell lipid extracts. Interestingly, pulse-chase experiments demonstrated, that Ze117 inhibited the incorporation of choline-D9 in phosphatidylcholine species with saturated or monounsaturated fatty acids compared to control cells, while the synthesis of phosphatidylcholine species with polyunsaturated fatty acids was not affected. C6 cells whose membranes have become more rigid by Ze117 showed altered lateral mobility of ß1-adrenoceptors as well as reduced cAMP formation after stimulation with the ß1-adrenoceptor agonist dobutamine. CONCLUSION: Obviously, the signaling of ß1-adrenoceptors depends on the nature of the membrane environment. It can therefore be assumed that Ze117 has a normalizing effect not only on the membrane fluidity of "stressed" cells, but also on lateral mobility and subsequently on the signal transduction of membrane-associated receptors.


Asunto(s)
Hypericum/química , Fluidez de la Membrana/efectos de los fármacos , Fosfatidiletanolaminas/metabolismo , Extractos Vegetales/farmacología , Animales , Antracenos , Línea Celular Tumoral , Membrana Celular/química , Membrana Celular/efectos de los fármacos , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Hidrocortisona/farmacología , Perileno/análogos & derivados , Perileno/farmacología , Floroglucinol/análogos & derivados , Floroglucinol/farmacología , Extractos Vegetales/química , Quercetina/farmacología , Ratas , Receptores Adrenérgicos beta 1/metabolismo , Transducción de Señal/efectos de los fármacos , Terpenos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA